ﻻ يوجد ملخص باللغة العربية
We present a new model describing the evolution of triple stars which undergo common envelope evolution, using a combination of analytic and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which causes the outer triple orbit to shrink faster than the inner binary. In most cases, this leads to a chaotic dynamical interaction between the three stars, culminating in the ejection of one of the stars from the triple. This ejection and resulting recoil on the remnant binary are sufficient to eject all three stars from the envelope, which expands and dissipates after the stars have escaped. These results have implications for the properties of post-common envelope triples: they may only exist in cases where the envelope was ejected before the onset of dynamical instability, the likelihood of which depends on the initial binary separation and the envelope structure. In cases where the triple becomes dynamically unstable, the triple does not survive and the envelope dissipates without forming a planetary nebula.
Common envelope (CE) is an important phase in the evolution of interacting evolved binary systems. The interaction of the binary components during the CE evolution (CEE) stage gives rise to orbital inspiral and the formation of a short-period binary
I study a triple star common envelope evolution (CEE) of a tight binary system that is spiraling-in inside a giant envelope and launches jets that spin-up the envelope with an angular momentum component perpendicular to the orbital angular momentum o
Binary neutron stars have been observed as millisecond pulsars, gravitational-wave sources, and as the progenitors of short gamma-ray bursts and kilonovae. Massive stellar binaries that evolve into merging double neutron stars are believed to experie
Context. An important ingredient in binary evolution is the common-envelope (CE) phase. Although this phase is believed to be responsible for the formation of many close binaries, the process is not well understood. Aims. We investigate the character
The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving