ترغب بنشر مسار تعليمي؟ اضغط هنا

VisualSem: a high-quality knowledge graph for vision and language

181   0   0.0 ( 0 )
 نشر من قبل Iacer Calixto
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that the next frontier in natural language understanding (NLU) and generation (NLG) will include models that can efficiently access external structured knowledge repositories. In order to support the development of such models, we release the VisualSem knowledge graph (KG) which includes nodes with multilingual glosses and multiple illustrative images and visually relevant relations. We also release a neural multi-modal retrieval model that can use images or sentences as inputs and retrieves entities in the KG. This multi-modal retrieval model can be integrated into any (neural network) model pipeline and we encourage the research community to use VisualSem for data augmentation and/or as a source of grounding, among other possible uses. VisualSem as well as the multi-modal retrieval model are publicly available and can be downloaded in: https://github.com/iacercalixto/visualsem.



قيم البحث

اقرأ أيضاً

One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and na vigates a real-life urban environment. Due to the lack of human-annotated instructions that illustrate intricate urban scenes, outdoor VLN remains a challenging task to solve. This paper introduces a Multimodal Text Style Transfer (MTST) learning approach and leverages external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
308 - Jaemin Cho , Jie Lei , Hao Tan 2021
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expressi on comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5
163 - Songwei Ge , Devi Parikh 2021
We ask the question: to what extent can recent large-scale language and image generation models blend visual concepts? Given an arbitrary object, we identify a relevant object and generate a single-sentence description of the blend of the two using a language model. We then generate a visual depiction of the blend using a text-based image generation model. Quantitative and qualitative evaluations demonstrate the superiority of language models over classical methods for conceptual blending, and of recent large-scale image generation models over prior models for the visual depiction.
304 - Bin He , Di Zhou , Jinghui Xiao 2019
Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) proced ure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.
Since visual perception can give rich information beyond text descriptions for world understanding, there has been increasing interest in leveraging visual grounding for language learning. Recently, vokenization has attracted attention by using the p redictions of a text-to-image retrieval model as labels for language model supervision. Despite its success, the method suffers from approximation error of using finite image labels and the lack of vocabulary diversity of a small image-text dataset. To overcome these limitations, we present VidLanKD, a video-language knowledge distillation method for improving language understanding. We train a multi-modal teacher model on a video-text dataset, and then transfer its knowledge to a student language model with a text dataset. To avoid approximation error, we propose to use different knowledge distillation objectives. In addition, the use of a large-scale video-text dataset helps learn diverse and richer vocabularies. In our experiments, VidLanKD achieves consistent improvements over text-only language models and vokenization models, on several downstream language understanding tasks including GLUE, SQuAD, and SWAG. We also demonstrate the improved world knowledge, physical reasoning, and temporal reasoning capabilities of our model by evaluating on the GLUE-diagnostics, PIQA, and TRACIE datasets. Lastly, we present comprehensive ablation studies as well as visualizations of the learned text-to-video grounding results of our teacher and student language models. Our code and models are available at: https://github.com/zinengtang/VidLanKD

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا