ﻻ يوجد ملخص باللغة العربية
Identifying the source of the material within coronal mass ejections (CMEs) and understanding CME onset mechanisms are fundamental issues in solar and space physics. Parameters relating to plasma composition, such as charge states and He abundance (ahe), may be different for plasmas originating from differing processes or regions on the Sun. Thus, it is crucial to examine the relationship between in-situ measurements of CME composition and activity on the Sun. We study the CME that erupted on 2014 September 10, in association with an X1.6 flare, by analyzing AIA imaging and IRIS spectroscopic observations and its in-situ signatures detected by Wind and ACE. We find that during the slow expansion and intensity increase of the sigmoid, plasma temperatures of 9 MK, and higher, first appear at the footpoints of the sigmoid, associated with chromospheric brightening. Then the high-temperature region extends along the sigmoid. IRIS observations confirm that this extension is caused by transportation of hot plasma upflow. Our results show that chromospheric material can be heated to 9 MK, and above, by chromospheric evaporation at the sigmoid footpoints before flare onset. The heated chromospheric material can transport into the sigmoidal structure and supply mass to the CME. The aforementioned CME mass supply scenario provides a reasonable explanation for the detection of high charge states and elevated ahe in the associated ICME. The observations also demonstrate that the quasi-steady evolution in the precursor phase is dominated by magnetic reconnection between the rising flux rope and the overlying magnetic field structure.
Solar energetic particles (SEPs), accelerated during solar eruptions, propagate in turbulent solar wind before being observed with in situ instruments. In order to interpret their origin through comparison with remote-sensing observations of the sola
Numerical studies have been performed to interpret the observed shock overtaking magnetic cloud (MC) event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC
Coronal mass ejections (CMEs) are the primary sources of intense disturbances at Earth, where their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic field, which can be significantly altered during interactions
In order to have a comprehensive view of the propagation and evolution of coronal mass ejections (CMEs) from the Sun to deep interplanetary space beyond 1 au, we carry out a kinematic analysis of 7 CMEs in solar cycle 23. The events are required to h
A sample of isolated Earth-impacting ICMEs that occurred in the period January 2008 to August 2014 is analysed in order to study in detail the ICME in situ signatures with respect to the type of filament eruption related to the corresponding CME. For