A Metabolite Specific 3D Stack-of-Spiral bSSFP Sequence for Improved Lactate Imaging in Hyperpolarized [1-$^{13}$C]Pyruvate Studies on a 3T Clinical Scanner


الملخص بالإنكليزية

Purpose: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of non-recoverable hyperpolarized $^{13}$C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP (MS-3DSSFP) sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-$^{13}$C]pyruvate studies on a clinical 3T scanner. Methods: Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal $^{13}$C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-$^{13}$C]pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite specific gradient echo (MS-GRE) sequences for lactate imaging. Results: Simulations, phantom and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model and human kidneys. Conclusions: Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-$^{13}$C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate.

تحميل البحث