ﻻ يوجد ملخص باللغة العربية
Purpose: Acquisition timing and B$_1$ calibration are two key factors that affect the quality and accuracy of hyperpolarized $^{13}$C MRI. The goal of this project was to develop a new approach using regional bolus tracking to trigger Bloch-Siegert B$_1$ mapping and real-time B$_1$ calibration based on regional B$_1$ measurements, followed by dynamic imaging of hyperpolarized $^{13}C$ metabolites in vivo. Methods: The proposed approach was implemented on a system which allows real-time data processing and real-time control on the sequence. Real-time center frequency calibration upon the bolus arrival was also added. The feasibility of applying the proposed framework for in vivo hyperpolarized $^{13}$C imaging was tested on healthy rats, tumor-bearing mice and a healthy volunteer on a clinical 3T scanner following hyperpolarized [1-$^{13}$C]pyruvate injection. Multichannel receive coils were used in the human study. Results: Automatic acquisition timing based on either regional bolus peak or bolus arrival was achieved with the proposed framework. Reduced blurring artifacts in real-time reconstructed images were observed with real-time center frequency calibration. Real-time computed B$_1$ scaling factors agreed with real-time acquired B$_1$ maps. Flip angle correction using B$_1$ maps results in a more consistent quantification of metabolic activity (i.e, pyruvate-to-lactate conversion, k$_{PL}$). Experiment recordings are provided to demonstrate the real-time actions during the experiment. Conclusion: The proposed method was successfully demonstrated on animals and a human volunteer, and is anticipated to improve the efficient use of the hyperpolarized signal as well as the accuracy and robustness of hyperpolarized $^{13}$C imaging.
Purpose: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-Spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imagin
Purpose: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of non-recoverable hyperpolarized $^{13}$C magnetization, but suffers from poor spectral selectivity and long acquisition time. The
It was demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with ultraviolet (UV) light, enabling radical-free dissolution DNP. Although pyruvate is endogenous, an excess of addi
In this paper, we present a new method to generate an instantaneous volumetric image using a single x-ray projection. To fully extract motion information hidden in projection images, we partitioned a projection image into small patches. We utilized a
Purpose: Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility