ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Visual and Wireless Signal Feature based Approach for High-Precision Indoor Localization

68   0   0.0 ( 0 )
 نشر من قبل Chenlu Xiang
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

The existing localization systems for indoor applications basically rely on wireless signal. With the massive deployment of low-cost cameras, the visual image based localization become attractive as well. However, in the existing literature, the hybrid visual and wireless approaches simply combine the above schemes in a straight forward manner, and fail to explore the interactions between them. In this paper, we propose a joint visual and wireless signal feature based approach for high-precision indoor localization system. In this joint scheme, WiFi signals are utilized to compute the coarse area with likelihood probability and visual images are used to fine-tune the localization result. Based on the numerical results, we show that the proposed scheme can achieve 0.62m localization accuracy with near real-time running time.



قيم البحث

اقرأ أيضاً

With the rising demand for indoor localization, high precision technique-based fingerprints became increasingly important nowadays. The newest advanced localization system makes effort to improve localization accuracy in the time or frequency domain, for example, the UWB localization technique can achieve centimeter-level accuracy but have a high cost. Therefore, we present a spatial domain extension-based scheme with low cost and verify the effectiveness of antennas extension in localization accuracy. In this paper, we achieve sub-meter level localization accuracy using a single AP by extending three radio links of the modified laptops to more antennas. Moreover, the experimental results show that the localization performance is superior as the number of antennas increases with the help of spatial domain extension and angular domain assisted.
In this paper, we propose a joint indoor localization and navigation algorithm to enable a swarm of unmanned aerial vehicles (UAVs) to deploy in a specific spatial formation in indoor environments. In the envisioned scenario, we consider a static use r acting as a central unit whose main task is to acquire all the UAV measurements carrying position-dependent information and to estimate the UAV positions when there is no existing infrastructure for positioning. Subsequently, the user exploits the estimated positions as inputs for the navigation control with the aim of deploying the UAVs in a desired formation in space (formation shaping). The user plans the trajectory of each UAV in real time, guaranteeing a safe navigation in the presence of obstacles. The proposed algorithm guides the UAVs to their desired final locations with good accuracy.
212 - Ziang Yang , Haobo Zhang , Boya Di 2021
Indoor wireless simultaneous localization and mapping (SLAM) is considered as a promising technique to provide positioning services in future 6G systems. However, the accuracy of traditional wireless SLAM system heavily relies on the quality of propa gation paths, which is limited by the uncontrollable wireless environment. In this paper, we propose a novel SLAM system assisted by a reconfigurable intelligent surface (RIS) to address this issue. By configuring the phase shifts of the RIS, the strength of received signals can be enhanced to resist the disturbance of noise. However, the selection of phase shifts heavily influences the localization and mapping phase, which makes the design very challenging. To tackle this challenge, we formulate the RIS-assisted indoor SLAM optimization problem and design an error minimization algorithm for it. Simulations show that the RIS assisted SLAM system can decrease the positioning error by at least 31% compared with benchmark schemes.
63 - M. Zhou 2019
Indoor intrusion detection technology has been widely utilized in network security monitoring, smart city, entertainment games, and other fields. Most existing indoor intrusion detection methods directly exploit the Received Signal Strength (RSS) dat a collected by Monitor Points (MPs) and do not consider the instability of WLAN signals in the complex indoor environments. In response to this urgent problem, this paper proposes a novel WLAN indoor intrusion detection method based on deep signal feature fusion and Minimized Multiple Kernel Maximum Mean Discrepancy (Minimized-MKMMD). Firstly, the multi-branch deep convolutional neural network is used to conduct the dimensionality reduction and feature fusion of the RSS data, and the tags are obtained according to the features of the offline and online RSS fusion features that are corresponding to the silence and intrusion states, and then based on this, the source domain and target domain are constructed respectively. Secondly, the optimal transfer matrix is constructed by minimizing MKMMD. Thirdly, the transferred RSS data in the source domain is utilized for training the classifiers that are applying in getting the classification of the RSS fusion features in the target domain in the same shared subspace. Finally, the intrusion detection of the target environment is realized by iteratively updating the process above until the algorithm converges. The experimental results show that the proposed method can effectively improve the accuracy and robustness of the intrusion detection system.
The received signal strength (RSS) based technique is extensively utilized for localization in the indoor environments. Since the RSS values of neighboring locations may be similar, the localization accuracy of the RSS based technique is limited. To tackle this problem, in this paper, we propose to utilize reconfigurable intelligent surface (RIS) for the RSS based multi-user localization. As the RIS is able to customize the radio channels by adjusting the phase shifts of the signals reflected at the surface, the localization accuracy in the RIS aided scheme can be improved by choosing the proper phase shifts with significant differences of RSS values among adjacent locations. However, it is challenging to select the optimal phase shifts because the decision function for location estimation and the phase shifts are coupled. To tackle this challenge, we formulate the optimization problem for the RIS-aided localization, derive the optimal decision function, and design the phase shift optimization (PSO) algorithm to solve the formulated problem efficiently. Analysis of the proposed RIS aided technique is provided, and the effectiveness is validated through simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا