ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures

85   0   0.0 ( 0 )
 نشر من قبل Nicholas Lambert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion.



قيم البحث

اقرأ أيضاً

Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables, and are currently also replacing coaxial cables for short-range c ommunications. Optical fibers also exhibit significantly lower thermal conductivity, making optical interconnects attractive for interfacing with superconducting circuits and devices. Yet little is known about modulation at cryogenic temperatures. Here we demonstrate a proof-of-principle experiment, showing that currently employed Ti-doped LiNbO modulators maintain the Pockels coefficient at 3K---a base temperature for classical microwave amplifier circuitry. We realize electro-optical read-out of a superconducting electromechanical circuit to perform both coherent spectroscopy, measuring optomechanically-induced transparency, and incoherent thermometry, encoding the thermomechanical sidebands in an optical signal. Although the achieved noise figures are high, approaches that match the lower-bandwidth microwave signals, use integrated devices or materials with higher EO coefficient, should achieve added noise similar to current HEMT amplifiers, providing a route to parallel readout for emerging quantum or classical computing platforms.
High performance integrated electro-optic modulators operating at low temperature are critical for optical interconnects in cryogenic applications. Existing integrated modulators, however, suffer from reduced modulation efficiency or bandwidth at low temperatures because they rely on tuning mechanisms that degrade with decreasing temperature. Graphene modulators are a promising alternative, since graphenes intrinsic carrier mobility increases at low temperature. Here we demonstrate an integrated graphene-based electro-optic modulator whose 14.7 GHz bandwidth at 4.9 K exceeds the room-temperature bandwidth of 12.6 GHz. The bandwidth of the modulator is limited only by high contact resistance, and its intrinsic RC-limited bandwidth is 200 GHz at 4.9 K.
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.
The residual amplitude modulation ($mathrm{RAM}$) is the undesired, non-zero amplitude modulation that usually occurs when a phase modulation based on the electro-optic effect is imprinted on a laser beam. In this work, we show that electro-optic mod ulators (EOMs) that are used to generate the sidebands on the laser beam also generate a $mathrm{RAM}$ in the optical setup. This result contradicts standard textbooks, which assume the amplitude remains unchanged in the process and should be considered as a fundamental $mathrm{RAM}$ ($mathrm{RAM_{F}}$) for these devices. We present a classical model for the propagation of an infrared laser with frequency $omega_{0}$ in a wedge-shaped crystal and an EOM with an RF modulating signal of frequency $Omega$. Since ${Omega}ll omega_{0}$, we solve Maxwells equations in a time-varying media via a WKB approximation and we write the electromagnetic fields in terms of quasi-plane waves. From the emerging fields of the setup, we compute the associated $mathrm{RAM_{F}}$ and show that it depends on the phase-modulation depth $m$ and the quotient $left(frac{Omega}{omega_{0}}right)$. The $mathrm{RAM_{F}}$ values obtained for the EOMs used in gravitational wave detectors are presented. Finally, the cancellation of $mathrm{RAM_{F}}$ is analyzed.
Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on d ifferent platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~ 12 ps on a single Ti:LIbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93$pm$ 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا