ﻻ يوجد ملخص باللغة العربية
Galactic winds are essential to regulation of star formation in galaxies. To study the distribution and dynamics of molecular gas in a wind, we imaged the nearby starburst galaxy NGC 1482 in CO ($J=1rightarrow0$) at a resolution of 1 ($approx100$ pc) using the Atacama Large Millimeter/submillimeter Array. Molecular gas is detected in a nearly edge-on disk with a radius of 3 kpc and a biconical outflow emerging from the central 1 kpc starburst and extending to at least 1.5 kpc perpendicular to the disk. In the outflow, CO gas is distributed approximately as a cylindrically symmetrical envelope surrounding the warm and hot ionized gas traced by H$alpha$ and soft X-rays. The velocity, mass outflow rate, and kinetic energy of the molecular outflow are $v_mathrm{w}sim100~mathrm{km~s^{-1}}$, $dot{M}_mathrm{w}sim7~M_odot~mathrm{yr}^{-1}$, and $E_mathrm{w}sim7times10^{54}~mathrm{erg}$, respectively. $dot{M}_mathrm{w}$ is comparable to the star formation rate ($dot{M}_mathrm{w}/mathrm{SFR}sim2$) and $E_mathrm{w}$ is $sim1%$ of the total energy released by stellar feedback in the past $1times10^7~mathrm{yr}$, which is the dynamical timescale of the outflow. The results indicate that the wind is starburst driven.
Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth
The Nobeyama Millimeter Array (NMA) has been used to make aperture synthesis CO(1-0) observations of the post-starburst galaxy NGC 5195. CO(1-0) and HCN(1-0) observations of NGC 5195 using the Nobeyama 45 m telescope are also presented. High-resoluti
Dense molecular gas and star formation are correlated in galaxies. The effect of low metallicity on this relationship is crucial for interpreting observations of high redshift galaxies, which have lower metallicities than galaxies today. However, it
We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detail analysis of their optical spectra, we found some peculiar IR-bright DOGs t
We present a detailed study of the molecular gas in the fast AGN-driven outflow in the nearby radio-loud Seyfert galaxy IC 5063. Using ALMA observations of a number of tracers (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the dif