ﻻ يوجد ملخص باللغة العربية
Efficient sampling for the conditional time integrated variance process in the Heston stochastic volatility model is key to the simulation of the stock price based on its exact distribution. We construct a new series expansion for this integral in terms of double infinite weighted sums of particular independent random variables through a change of measure and the decomposition of squared Bessel bridges. When approximated by series truncations, this representation has exponentially decaying truncation errors. We propose feasible strategies to largely reduce the implementation of the new series to simulations of simple random variables that are independent of any model parameters. We further develop direct inversion algorithms to generate samples for such random variables based on Chebyshev polynomial approximations for their inverse distribution functions. These approximations can be used under any market conditions. Thus, we establish a strong, efficient and almost exact sampling scheme for the Heston model.
We present an option pricing formula for European options in a stochastic volatility model. In particular, the volatility process is defined using a fractional integral of a diffusion process and both the stock price and the volatility processes have
How to reconcile the classical Heston model with its rough counterpart? We introduce a lifted version of the Heston model with n multi-factors, sharing the same Brownian motion but mean reverting at different speeds. Our model nests as extreme cases
We consider a stochastic volatility model with Levy jumps for a log-return process $Z=(Z_{t})_{tgeq 0}$ of the form $Z=U+X$, where $U=(U_{t})_{tgeq 0}$ is a classical stochastic volatility process and $X=(X_{t})_{tgeq 0}$ is an independent Levy proce
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur
In a discrete-time financial market, a generalized duality is established for model-free superhedging, given marginal distributions of the underlying asset. Contrary to prior studies, we do not require contingent claims to be upper semicontinuous, al