ﻻ يوجد ملخص باللغة العربية
The neutrino minimal standard model ($ u$MSM) has been tightly constrained in the recent years, either from dark matter (DM) production or from X-ray and small-scale observations. However, current bounds on sterile neutrino DM can be significantly modified when considering a $ u$MSM extension, in which the DM candidates interact via a massive (axial) vector field. In particular, standard production mechanisms in the early Universe can be affected through the decay of such a massive mediator. We perform an indirect detection analysis to study how the $ u$MSM parameter-space constraints are affected by said interactions. We compute the X-ray fluxes considering a DM profile that self-consistently accounts for the particle physics model by using an updated version of the Ruffini-Arguelles-Rueda (RAR) fermionic (ino) model, instead of phenomenological profiles such as the Navarro-Frenk-White (NFW) distribution. We show that the RAR profile accounting for interacting DM, is compatible with measurements of the Galaxy rotation curve and constraints on the DM self-interacting cross section from the Bullet cluster. A new analysis of the X-ray NuSTAR data in the central parsec of the Milky Way, is here performed to derive constraints on the self-interacting sterile neutrino parameter-space. Such constraints are stronger than those obtained with commonly used DM profiles, due to the dense DM core characteristic of the RAR profiles.
We calculate the most stringent constraints up to date on the parameter space for sterile neutrino warm dark matter models possessing a radiative decay channel into X-rays. These constraints arise from the X-ray flux observations from the Galactic ce
Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can b
We investigate the impacts of dark energy on constraining massive (active/sterile) neutrinos in interacting dark energy (IDE) models by using the current observations. We employ two typical IDE models, the interacting $w$ cold dark matter (I$w$CDM) m
Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. To reconcile sterile neutrinos with cosmology self interaction between sterile neutrinos has been studied. We
Dark matter self interactions can leave distinctive signatures on the properties of satellite galaxies around Milky Way--like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We delineate the regions of self-int