ترغب بنشر مسار تعليمي؟ اضغط هنا

Virial-ansatze for the Schrodinger Equation with a symmetric strictly convex potential

120   0   0.0 ( 0 )
 نشر من قبل Silvana Pilar Flego
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. P. Flego




اسأل ChatGPT حول البحث

Considering symmetric strictly convex potentials, a local relationship is inferred from the virial theorem, based on which a real log-concave function can be constructed. Using this as a weight function and in such a way that the virial theorem can still be verified, parameter-free ansatze for the eigenfunctions of the associated Schrodinger equation are built. To illustrate the process, the technique is successfully tested against the harmonic oscillator, in which it leads to the exact eigenfunctions, and against the quartic anharmonic oscillator, which is considered the paradigmatic testing ground for new approaches to the Schrodinger equation.



قيم البحث

اقرأ أيضاً

134 - S. P. Flego 2021
Recently was introduced in the literature a procedure to obtain ansatze, free of parameters, for the eigenfunctions of the time-independent Schrodinger equation with symmetric convex potential. In the present work, we test this technique in regard to $x^{2kappa}$-type potentials. We study the behavior of the ansatze regarding the degree of the potential and to the intervening coupling constant. Finally, we discuss how the results could be used to establish the upper bounds of the relative errors in situations where intervening polynomial potentials.
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
In this paper an exact transparent boundary condition (TBC) for the multidimensional Schrodinger equation in a hyperrectangular computational domain is proposed. It is derived as a generalization of exact transparent boundary conditions for 2D and 3D equations reported before. A new exact fully discrete (i.e. derived directly from the finite-difference scheme used) 1D transparent boundary condition is also proposed. Several numerical experiments using an improved unconditionally stable numerical implementation in the 3D space demonstrate propagation of Gaussian wave packets in free space and penetration of a particle through a 3D spherically asymmetrical barrier. The application of the multidimensional transparent boundary condition to the dynamics of the 2D system of two non-interacting particles is considered. The proposed boundary condition is simple, robust and can be useful in the field of computational quantum mechanics, when an exact solution of the multidimensional Schrodinger equation (including multi-particle problems) is required.
The dynamics of any classical-mechanics system can be formulated in the reparametrization-invariant (RI) form (that is we use the parametric representation for trajectories, ${bf x}={bf x}(tau)$, $t=t(tau)$ instead of ${bf x}={bf x}(t)$). In this ped agogical note we discuss what the quantization rules look like for the RI formulation of mechanics. We point out that in this case some of the rules acquire an intuitively clearer form. Hence the formulation could be an alternative starting point for teaching the basic principles of quantum mechanics. The advantages can be resumed as follows. a) In RI formulation both the temporal and the spatial coordinates are subject to quantization. b) The canonical Hamiltonian of RI formulation is proportional to the quantity $tilde H=p_t+H$, where $H$ is the Hamiltonian of the initial formulation. Due to the reparametrization invariance, the quantity $tilde H$ vanishes for any solution, $tilde H=0$. So the corresponding quantum-mechanical operator annihilates the wave function, $hat{tilde H}Psi=0$, which is precisely the Schrodinger equation $ihbarpartial_tPsi=hat HPsi$. As an illustration, we discuss quantum mechanics of the relativistic particle.
269 - Andrea Sacchetti 2015
A Bose-Einstein condensate (BEC) confined in a one-dimensional lattice under the effect of an external homogeneous field is described by the Gross-Pitaevskii equation. Here we prove that such an equation can be reduced, in the semiclassical limit and in the case of a lattice with a finite number of wells, to a finite-dimensional discrete nonlinear Schrodinger equation. Then, by means of numerical experiments we show that the BECs center of mass exhibits an oscillating behavior with modulated amplitude; in particular, we show that the oscillating period actually depends on the shape of the initial wavefunction of the condensate as well as on the strength of the nonlinear term. This fact opens a question concerning the validity of a method proposed for the determination of the gravitational constant by means of the measurement of the oscillating period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا