ﻻ يوجد ملخص باللغة العربية
Despite the advent of deep learning in computer vision, the general handwriting recognition problem is far from solved. Most existing approaches focus on handwriting datasets that have clearly written text and carefully segmented labels. In this paper, we instead focus on learning handwritten characters from maintenance logs, a constrained setting where data is very limited and noisy. We break the problem into two consecutive stages of word segmentation and word recognition respectively and utilize data augmentation techniques to train both stages. Extensive comparisons with popular baselines for scene-text detection and word recognition show that our system achieves a lower error rate and is more suited to handle noisy and difficult documents
Historical documents present many challenges for offline handwriting recognition systems, among them, the segmentation and labeling steps. Carefully annotated textlines are needed to train an HTR system. In some scenarios, transcripts are only availa
This paper introduces an agent-centric approach to handle novelty in the visual recognition domain of handwriting recognition (HWR). An ideal transcription agent would rival or surpass human perception, being able to recognize known and new character
We attempt to overcome the restriction of requiring a writing surface for handwriting recognition. In this study, we design a prototype of a stylus equipped with motion sensor, and utilizes gyroscopic and acceleration sensor reading to perform writte
In this project, we leverage a trained single-letter classifier to predict the written word from a continuously written word sequence, by designing a word reconstruction pipeline consisting of a dynamic-programming algorithm and an auto-correction mo
Handwriting Recognition enables a person to scribble something on a piece of paper and then convert it into text. If we look into the practical reality there are enumerable styles in which a character may be written. These styles can be self combined