ﻻ يوجد ملخص باللغة العربية
Much of NLP research has focused on crowdsourced static datasets and the supervised learning paradigm of training once and then evaluating test performance. As argued in de Vries et al. (2020), crowdsourced data has the issues of lack of naturalness and relevance to real-world use cases, while the static dataset paradigm does not allow for a model to learn from its experiences of using language (Silver et al., 2013). In contrast, one might hope for machine learning systems that become more useful as they interact with people. In this work, we build and deploy a role-playing game, whereby human players converse with learning agents situated in an open-domain fantasy world. We show that by training models on the conversations they have with humans in the game the models progressively improve, as measured by automatic metrics and online engagement scores. This learning is shown to be more efficient than crowdsourced data when applied to conversations with real users, as well as being far cheaper to collect.
Task 1 of the DSTC8-track1 challenge aims to develop an end-to-end multi-domain dialogue system to accomplish complex users goals under tourist information desk settings. This paper describes our submitted solution, Hierarchical Context Enhanced Dial
Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a straightforward learning signal. Humans effortlessl
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amoun
In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using dat