ﻻ يوجد ملخص باللغة العربية
We introduce the sudden variant (SNZ) of the Net Zero scheme realizing controlled-$Z$ (CZ) gates by baseband flux control of transmon frequency. SNZ CZ gates operate at the speed limit of transverse coupling between computational and non-computational states by maximizing intermediate leakage. The key advantage of SNZ is tuneup simplicity, owing to the regular structure of conditional phase and leakage as a function of two control parameters. We realize SNZ CZ gates in a multi-transmon processor, achieving $99.93pm0.24%$ fidelity and $0.10pm0.02%$ leakage. SNZ is compatible with scalable schemes for quantum error correction and adaptable to generalized conditional-phase gates useful in intermediate-scale applications.
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorit
The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore, a low-error-rate, easy-to-scale two-qubit gate scheme is highl
We propose and experimentally demonstrate a scheme for implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before an
The experimental optimization of a two-qubit controlled-Z (CZ) gate is realized following two different data-driven gradient ascent pulse engineering (GRAPE) protocols in the aim of optimizing the gate operator and the output quantum state, respectiv