ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed angle inverse scattering in the presence of a Riemannian metric

180   0   0.0 ( 0 )
 نشر من قبل Shiqi Ma
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.



قيم البحث

اقرأ أيضاً

We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one mea surement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur ements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
103 - Andras Vasy 2019
We use a Lagrangian perspective to show the limiting absorption principle on Riemannian scattering, i.e. asymptotically conic, spaces, and their generalizations. More precisely we show that, for non-zero spectral parameter, the `on spectrum, as well as the `off-spectrum, spectral family is Fredholm in function spaces which encode the Lagrangian regularity of generalizations of `outgoing spherical waves of scattering theory, and indeed this persists in the `physical half plane.
134 - Yu Fang , Yunyan Yang 2018
Let $(Sigma,g)$ be a closed Riemannian surface, $W^{1,2}(Sigma,g)$ be the usual Sobolev space, $textbf{G}$ be a finite isometric group acting on $(Sigma,g)$, and $mathscr{H}_textbf{G}$ be a function space including all functions $uin W^{1,2}(Sigma,g) $ with $int_Sigma udv_g=0$ and $u(sigma(x))=u(x)$ for all $sigmain textbf{G}$ and all $xinSigma$. Denote the number of distinct points of the set ${sigma(x): sigmain textbf{G}}$ by $I(x)$ and $ell=inf_{xin Sigma}I(x)$. Let $lambda_1^textbf{G}$ be the first eigenvalue of the Laplace-Beltrami operator on the space $mathscr{H}_textbf{G}$. Using blow-up analysis, we prove that if $alpha<lambda_1^textbf{G}$ and $betaleq 4piell$, then there holds $$sup_{uinmathscr{H}_textbf{G},,int_Sigma| abla_gu|^2dv_g-alpha int_Sigma u^2dv_gleq 1}int_Sigma e^{beta u^2}dv_g<infty;$$ if $alpha<lambda_1^textbf{G}$ and $beta>4piell$, or $alphageq lambda_1^textbf{G}$ and $beta>0$, then the above supremum is infinity; if $alpha<lambda_1^textbf{G}$ and $betaleq 4piell$, then the above supremum can be attained. Moreover, similar inequalities involving higher order eigenvalues are obtained. Our results partially improve original inequalities of J. Moser cite{Moser}, L. Fontana cite{Fontana} and W. Chen cite{Chen-90}.
153 - Yunyan Yang , Xiaobao Zhu 2018
Let $(Sigma,g)$ be a closed Riemannian surface, $textbf{G}={sigma_1,cdots,sigma_N}$ be an isometric group acting on it. Denote a positive integer $ell=inf_{xinSigma}I(x)$, where $I(x)$ is the number of all distinct points of the set ${sigma_1(x),cdot s,sigma_N(x)}$. A sufficient condition for existence of solutions to the mean field equation $$Delta_g u=8piellleft(frac{he^u}{int_Sigma he^udv_g}-frac{1}{{rm Vol}_g(Sigma)}right)$$ is given. This recovers results of Ding-Jost-Li-Wang (Asian J Math 1997) when $ell=1$ or equivalently $textbf{G}={Id}$, where $Id$ is the identity map.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا