ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph colorings under global structural conditions

113   0   0.0 ( 0 )
 نشر من قبل Xueliang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

More than ten years ago in 2008, a new kind of graph coloring appeared in graph theory, which is the {it rainbow connection coloring} of graphs, and then followed by some other new concepts of graph colorings, such as {it proper connection coloring, monochromatic connection coloring, and conflict-free connection coloring} of graphs. In about ten years of our consistent study, we found that these new concepts of graph colorings are actually quite different from the classic graph colorings. These {it colored connection colorings} of graphs are brand-new colorings and they need to take care of global structural properties (for example, connectivity) of a graph under the colorings; while the traditional colorings of graphs are colorings under which only local structural properties (adjacent vertices or edges) of a graph are taken care of. Both classic colorings and the new colored connection colorings can produce the so-called chromatic numbers. We call the colored connection numbers the {it global chromatic numbers}, and the classic or traditional chromatic numbers the {it local chromatic numbers}. This paper intends to clarify the difference between the colored connection colorings and the traditional colorings, and finally to propose the new concepts of global colorings under which global structural properties of the colored graph are kept, and the global chromatic numbers.



قيم البحث

اقرأ أيضاً

We propose a new approach for defining and searching clusters in graphs that represent real technological or transaction networks. In contrast to the standard way of finding dense parts of a graph, we concentrate on the structure of edges between the clusters, as it is motivated by some earlier observations, e.g. in the structure of networks in ecology and economics and by applications of discrete tomography. Mathematically special colorings and chromatic numbers of graphs are studied.
A proper edge-coloring of a graph $G$ with colors $1,ldots,t$ is called an emph{interval cyclic $t$-coloring} if all colors are used, and the edges incident to each vertex $vin V(G)$ are colored by $d_{G}(v)$ consecutive colors modulo $t$, where $d_{ G}(v)$ is the degree of a vertex $v$ in $G$. A graph $G$ is emph{interval cyclically colorable} if it has an interval cyclic $t$-coloring for some positive integer $t$. The set of all interval cyclically colorable graphs is denoted by $mathfrak{N}_{c}$. For a graph $Gin mathfrak{N}_{c}$, the least and the greatest values of $t$ for which it has an interval cyclic $t$-coloring are denoted by $w_{c}(G)$ and $W_{c}(G)$, respectively. In this paper we investigate some properties of interval cyclic colorings. In particular, we prove that if $G$ is a triangle-free graph with at least two vertices and $Gin mathfrak{N}_{c}$, then $W_{c}(G)leq vert V(G)vert +Delta(G)-2$. We also obtain bounds on $w_{c}(G)$ and $W_{c}(G)$ for various classes of graphs. Finally, we give some methods for constructing of interval cyclically non-colorable graphs.
An edge-coloring of a graph $G$ with consecutive integers $c_{1},ldots,c_{t}$ is called an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to any vertex of $G$ are distinct and form an interval of integers. A grap h $G$ is interval colorable if it has an interval $t$-coloring for some positive integer $t$. The set of all interval colorable graphs is denoted by $mathfrak{N}$. In 2004, Giaro and Kubale showed that if $G,Hin mathfrak{N}$, then the Cartesian product of these graphs belongs to $mathfrak{N}$. In the same year they formulated a similar problem for the composition of graphs as an open problem. Later, in 2009, the first author showed that if $G,Hin mathfrak{N}$ and $H$ is a regular graph, then $G[H]in mathfrak{N}$. In this paper, we prove that if $Gin mathfrak{N}$ and $H$ has an interval coloring of a special type, then $G[H]in mathfrak{N}$. Moreover, we show that all regular graphs, complete bipartite graphs and trees have such a special interval coloring. In particular, this implies that if $Gin mathfrak{N}$ and $T$ is a tree, then $G[T]in mathfrak{N}$.
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$ -colorings of the graphs $H_2(n,n-1)$ a notion of robustness is introduced. It is based on the tolerance of swapping colors along an edge without destroying properness of the coloring. An explicit description of the maximally robust $4$-colorings of $H_2(n,n-1)$ is presented.
We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا