ترغب بنشر مسار تعليمي؟ اضغط هنا

PIANOTREE VAE: Structured Representation Learning for Polyphonic Music

76   0   0.0 ( 0 )
 نشر من قبل Ziyu Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The dominant approach for music representation learning involves the deep unsupervised model family variational autoencoder (VAE). However, most, if not all, viable attempts on this problem have largely been limited to monophonic music. Normally composed of richer modality and more complex musical structures, the polyphonic counterpart has yet to be addressed in the context of music representation learning. In this work, we propose the PianoTree VAE, a novel tree-structure extension upon VAE aiming to fit the polyphonic music learning. The experiments prove the validity of the PianoTree VAE via (i)-semantically meaningful latent code for polyphonic segments; (ii)-more satisfiable reconstruction aside of decent geometry learned in the latent space; (iii)-this models benefits to the variety of the downstream music generation.



قيم البحث

اقرأ أيضاً

Detecting singing-voice in polyphonic instrumental music is critical to music information retrieval. To train a robust vocal detector, a large dataset marked with vocal or non-vocal label at frame-level is essential. However, frame-level labeling is time-consuming and labor expensive, resulting there is little well-labeled dataset available for singing-voice detection (S-VD). Hence, we propose a data augmentation method for S-VD by transfer learning. In this study, clean speech clips with voice activity endpoints and separate instrumental music clips are artificially added together to simulate polyphonic vocals to train a vocal/non-vocal detector. Due to the different articulation and phonation between speaking and singing, the vocal detector trained with the artificial dataset does not match well with the polyphonic music which is singing vocals together with the instrumental accompaniments. To reduce this mismatch, transfer learning is used to transfer the knowledge learned from the artificial speech-plus-music training set to a small but matched polyphonic dataset, i.e., singing vocals with accompaniments. By transferring the related knowledge to make up for the lack of well-labeled training data in S-VD, the proposed data augmentation method by transfer learning can improve S-VD performance with an F-score improvement from 89.5% to 93.2%.
In this paper, we explore the use of a factorized hierarchical variational autoencoder (FHVAE) model to learn an unsupervised latent representation for dialect identification (DID). An FHVAE can learn a latent space that separates the more static att ributes within an utterance from the more dynamic attributes by encoding them into two different sets of latent variables. Useful factors for dialect identification, such as phonetic or linguistic content, are encoded by a segmental latent variable, while irrelevant factors that are relatively constant within a sequence, such as a channel or a speaker information, are encoded by a sequential latent variable. The disentanglement property makes the segmental latent variable less susceptible to channel and speaker variation, and thus reduces degradation from channel domain mismatch. We demonstrate that on fully-supervised DID tasks, an end-to-end model trained on the features extracted from the FHVAE model achieves the best performance, compared to the same model trained on conventional acoustic features and an i-vector based system. Moreover, we also show that the proposed approach can leverage a large amount of unlabeled data for FHVAE training to learn domain-invariant features for DID, and significantly improve the performance in a low-resource condition, where the labels for the in-domain data are not available.
Background music affects lyrics intelligibility of singing vocals in a music piece. Automatic lyrics alignment and transcription in polyphonic music are challenging tasks because the singing vocals are corrupted by the background music. In this work, we propose to learn music genre-specific characteristics to train polyphonic acoustic models. We first compare several automatic speech recognition pipelines for the application of lyrics transcription. We then present the lyrics alignment and transcription performance of music-informed acoustic models for the best-performing pipeline, and systematically study the impact of music genre and language model on the performance. With such genre-based approach, we explicitly model the music without removing it during acoustic modeling. The proposed approach outperforms all competing systems in the lyrics alignment and transcription tasks on several well-known polyphonic test datasets.
Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech. LVMs admit an intuitive probabilistic interpretation where the latent structure shapes the i nformation extracted from the signal. Even though LVMs have recently seen a renewed interest due to the introduction of Variational Autoencoders (VAEs), their use for speech representation learning remains largely unexplored. In this work, we propose Convolutional Deep Markov Model (ConvDMM), a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks. This unsupervised model is trained using black box variational inference. A deep convolutional neural network is used as an inference network for structured variational approximation. When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods on linear phone classification and recognition on the Wall Street Journal dataset. Furthermore, we found that ConvDMM complements self-supervised methods like Wav2Vec and PASE, improving on the results achieved with any of the methods alone. Lastly, we find that ConvDMM features enable learning better phone recognizers than any other features in an extreme low-resource regime with few labeled training examples.
Deep representation learning offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks. Two central methods for representation learning include deep metric learning an d classification, both having the same goal of learning a representation that can generalize well across tasks. Along with generalization, the emerging concept of disentangled representations is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space. In this paper we present a single representation learning framework that elucidates the relationship between metric learning, classification, and disentanglement in a holistic manner. For this, we (1) outline past work on the relationship between metric learning and classification, (2) extend this relationship to multi-label data by exploring three different learning approaches and their disentangl

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا