Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in $mathbb{R}^N$ and applications


الملخص بالإنكليزية

Under the lack of variational structure and nondegeneracy, we investigate three notions of textit{generalized principal eigenvalue} for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality and boundary Harnack inequality are proved to support our analysis. This is a continuation of our first work [3] and a substantial contribution in the development of the theory of textit{generalized principal eigenvalue} beside the works [8, 13, 12, 9, 29]. We use these notions to characterize the validity of maximum principle and study the existence, nonexistence and uniqueness of positive solutions of Fisher-KPP type equations in the whole space. The sliding method is intrinsically improved for infinity Laplacian to solve the problem. The results are related to the Liouville type results, which will be meticulously explained.

تحميل البحث