ﻻ يوجد ملخص باللغة العربية
Minimal paths are regarded as a powerful and efficient tool for boundary detection and image segmentation due to its global optimality and the well-established numerical solutions such as fast marching method. In this paper, we introduce a flexible interactive image segmentation model based on the Eikonal partial differential equation (PDE) framework in conjunction with region-based homogeneity enhancement. A key ingredient in the introduced model is the construction of local geodesic metrics, which are capable of integrating anisotropic and asymmetric edge features, implicit region-based homogeneity features and/or curvature regularization. The incorporation of the region-based homogeneity features into the metrics considered relies on an implicit representation of these features, which is one of the contributions of this work. Moreover, we also introduce a way to build simple closed contours as the concatenation of two disjoint open curves. Experimental results prove that the proposed model indeed outperforms state-of-the-art minimal paths-based image segmentation approaches.
Numerical computation of shortest paths or geodesics on curved domains, as well as the associated geodesic distance, arises in a broad range of applications across digital geometry processing, scientific computing, computer graphics, and computer vis
Weakly supervised image segmentation trained with image-level labels usually suffers from inaccurate coverage of object areas during the generation of the pseudo groundtruth. This is because the object activation maps are trained with the classificat
Until now, all single level segmentation algorithms except CNN-based ones lead to over segmentation. And CNN-based segmentation algorithms have their own problems. To avoid over segmentation, multiple thresholds of criteria are adopted in region merg
Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may
The Voronoi diagram-based dual-front active contour models are known as a powerful and efficient way for addressing the image segmentation and domain partitioning problems. In the basic formulation of the dual-front models, the evolving contours can