ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-component dynamics and the liquid-like to gas-like crossover in supercritical water

90   0   0.0 ( 0 )
 نشر من قبل Peihao Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular-scale dynamics in sub- to super-critical water is studied with inelastic X-ray scattering and molecular dynamics simulations. The obtained longitudinal current correlation spectra can be decomposed into two main components: a low-frequency (LF), gas-like component and a high-frequency (HF) component arising from the O--O stretching mode between hydrogen-bonded molecules, reminiscent of the longitudinal acoustic mode in ambient water. With increasing temperature, the hydrogen-bond network diminishes and the spectral weight shifts from HF to LF, leading to a transition from liquid-like to gas-like dynamics with rapid changes around the Widom line.



قيم البحث

اقرأ أيضاً

We have studied in detail the transition from gas-like to rigid liquid-like behaviour in supercritical $N_2$ at 300 K (2.4 $T_C$). Our study combines neutron diffraction and Raman spectroscopy with empirical potential structure refinement and ab-init io molecular dynamics simulations. We observe a narrow transition from gas-like to rigid liquid-like behaviour at ca. 150 MPa, which we associate with the Frenkel line. Our findings allow us to reliably characterize the Frenkel line using both diffraction and spectroscopy methods, backed up by simulation, for the same substance. We clearly lay out what parameters change, and what parameters do not change, when the Frenkel line is crossed.
Despite the technological importance of supercritical fluids, controversy remains about the details of their microscopic dynamics. In this work, we study four supercritical fluid systems -- water, Si, Te, and Lennard-Jones fluid -- emph{via} classica l molecular dynamics simulations. A universal two-component behavior is observed in the intermolecular dynamics of these systems, and the changing ratio between the two components leads to a crossover from liquidlike to gaslike dynamics, most rapidly around the Widom line. We find evidence to connect the liquidlike component dominating at lower temperatures with intermolecular bonding, and the component prominent at higher temperatures with free-particle, gaslike dynamics. The ratio between the components can be used to describe important properties of the fluid, such as its self-diffusion coefficient, in the transition region. Our results provide insight into the fundamental mechanism controlling the dynamics of supercritical fluids, and highlight the role of spatiotemporally inhomogenous dynamics even in thermodynamic states where no large-scale fluctuations exist in the fluid.
The high frequency dynamics of fluid oxygen have been investigated by Inelastic X-ray Scattering. In spite of the markedly supercritical conditions ($Tapprox 2 T_c$, $P>10^2 P_c$), the sound velocity exceeds the hydrodynamic value of about 20%, a fea ture which is the fingerprint of liquid-like dynamics. The comparison of the present results with literature data obtained in several fluids allow us to identify the extrapolation of the liquid vapor-coexistence line in the ($P/P_c$, $T/T_c$) plane as the relevant edge between liquid- and gas-like dynamics. More interestingly, this extrapolation is very close to the non metal-metal transition in hot dense fluids, at pressure and temperature values as obtained by shock wave experiments. This result points to the existence of a connection between structural modifications and transport properties in dense fluids.
Liquid-liquid phase transition (LLPT) in supercooled water has been a long-standing controversial issue. We show simulation results of real stable first-order phase transitions between high and low density liquid (HDL and LDL)-like structures in conf ined supercooled water in both positive and negative pressures. These topological phase transitions originate from H-bond network ordering in molecular rotational mode after molecular exchanges are frozen. It is explained by the order parameter-dependent free energy change upon mixing liquid-like and ice-like moieties of H-bond orientations which is governed by their two- to many-body interactions. This unexplored purely H-bond orientation-driven topological phase gives mid-density and stable intermediate mixed-phase with high and low density structures. The phase diagram of supercooled water demonstrate the second and third critical points of water.
Liquid polyamorphism is the intriguing possibility for a single component substance to exist in multiple liquid phases. We propose a minimal model for this phenomenon. Starting with a classical binary lattice model with critical azeotropy and liquid- liquid demixing, we allow interconversion of the two species, turning the system into a single-component fluid with two states differing in energy and entropy. Changing one interaction parameter allows to continuously switch from a liquid-liquid transition, terminated by a critical point, to a singularity-free scenario, exhibiting water-like anomalies but without polyamorphism. This resolves a controversy about how a liquid-liquid critical point can be found or not in simulations. The model provides a unified theoretical framework to describe supercooled water and a variety of polyamorphic liquids with water-like anomalies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا