ﻻ يوجد ملخص باللغة العربية
Considerable effort has been directed to developing asymptotically minimax procedures in problems of recovering functions and densities. These methods often rely on somewhat arbitrary and restrictive assumptions such as isotropy or spatial homogeneity. This work enhances theoretical understanding of Bayesian forests (including BART) under substantially relaxed smoothness assumptions. In particular, we provide a comprehensive study of asymptotic optimality and posterior contraction of Bayesian forests when the regression function has anisotropic smoothness that possibly varies over the function domain. We introduce a new class of sparse piecewise heterogeneous anisotropic H{o}lder functions and derive their minimax rate of estimation in high-dimensional scenarios under the $L_2$ loss. Next, we find that the default Bayesian CART prior, coupled with a subset selection prior for sparse estimation in high-dimensional scenarios, adapts to unknown heterogeneous smoothness and sparsity. These results show that Bayesian forests are uniquely suited for more general estimation problems which would render other default machine learning tools, such as Gaussian processes, suboptimal. Beyond nonparametric regression, we also show that Bayesian forests can be successfully applied to many other problems including density estimation and binary classification.
Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal no
Few methods in Bayesian non-parametric statistics/ machine learning have received as much attention as Bayesian Additive Regression Trees (BART). While BART is now routinely performed for prediction tasks, its theoretical properties began to be under
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variab
For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist performance of the $100(1-alpha)%$ Bayesian HPD credible set associated with priors which are truncations of flat priors
This paper deals with a new Bayesian approach to the standard one-sample $z$- and $t$- tests. More specifically, let $x_1,ldots,x_n$ be an independent random sample from a normal distribution with mean $mu$ and variance $sigma^2$. The goal is to test