ﻻ يوجد ملخص باللغة العربية
Wettability is a pore-scale property that impacts the relative movement and distribution of fluids in a porous medium. There are reservoir fluids that provoke the surface within pores to undergo a wettability change. This wettability change, in turn, alters the dynamics of relative permeabilities at the Darcy scale. Thus, modeling the impact of wettability change in relative permeabilities is essential to understand fluids interaction in porous media. In this study, we include time-dependent wettability change into the relative permeability--saturation relation by modifying the existing relative permeability function. To do so, we assume the wettability change is represented by the sorption-based model that is exposure time and chemistry dependent. This pore-scale model is then coupled with a triangular bundle-of-tubes model to simulate exposure time-dependent relative permeabilities data. The simulated data is used to characterize and quantify the wettability dynamics in the relative permeability--saturation curves. This study further shows the importance of accurate prediction of the relative permeability in a dynamically altering porous medium.
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model doe
A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [Phys. Plasmas 19, 024503 (2012)]. In the present paper the robustness of the dynamic instability mitigation mechanism is discussed further. The results pre
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on
A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused o
Corridors of size-selected crescent-shaped dunes, known as barchans, are commonly found in water, air, and other planetary environments. The growth of barchans results from the interplay between a fluid flow and a granular bed, but their size regulat