ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Lyapunov Functions for Piecewise Affine Systems with Neural Network Controllers

115   0   0.0 ( 0 )
 نشر من قبل Shaoru Chen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a learning-based method for Lyapunov stability analysis of piecewise affine dynamical systems in feedback with piecewise affine neural network controllers. The proposed method consists of an iterative interaction between a learner and a verifier, where in each iteration, the learner uses a collection of samples of the closed-loop system to propose a Lyapunov function candidate as the solution to a convex program. The learner then queries the verifier, which solves a mixed-integer program to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the stability condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. We design the learner and the verifier based on the analytic center cutting-plane method, in which the verifier acts as the cutting-plane oracle to refine the set of Lyapunov function candidates. We show that when the set of Lyapunov functions is full-dimensional in the parameter space, the overall procedure finds a Lyapunov function in a finite number of iterations. We demonstrate the utility of the proposed method in searching for quadratic and piecewise quadratic Lyapunov functions.



قيم البحث

اقرأ أيضاً

We propose a sampling-based approach to learn Lyapunov functions for a class of discrete-time autonomous hybrid systems that admit a mixed-integer representation. Such systems include autonomous piecewise affine systems, closed-loop dynamics of linea r systems with model predictive controllers, piecewise affine/linear complementarity/mixed-logical dynamical system in feedback with a ReLU neural network controller, etc. The proposed method comprises an alternation between a learner and a verifier to find a valid Lyapunov function inside a convex set of Lyapunov function candidates. In each iteration, the learner uses a collection of state samples to select a Lyapunov function candidate through a convex program in the parameter space. The verifier then solves a mixed-integer quadratic program in the state space to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the Lyapunov condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. By designing the learner and the verifier according to the analytic center cutting-plane method from convex optimization, we show that when the set of Lyapunov functions is full-dimensional in the parameter space, our method finds a Lyapunov function in a finite number of steps. We demonstrate our stability analysis method on closed-loop MPC dynamical systems and a ReLU neural network controlled PWA system.
In this work, the reachable set estimation and safety verification problems for a class of piecewise linear systems equipped with neural network controllers are addressed. The neural network is considered to consist of Rectified Linear Unit (ReLU) ac tivation functions. A layer-by-layer approach is developed for the output reachable set computation of ReLU neural networks. The computation is formulated in the form of a set of manipulations for a union of polytopes. Based on the output reachable set for neural network controllers, the output reachable set for a piecewise linear feedback control system can be estimated iteratively for a given finite-time interval. With the estimated output reachable set, the safety verification for piecewise linear systems with neural network controllers can be performed by checking the existence of intersections of unsafe regions and output reach set. A numerical example is presented to illustrate the effectiveness of our approach.
We provide a novel approach to synthesize controllers for nonlinear continuous dynamical systems with control against safety properties. The controllers are based on neural networks (NNs). To certify the safety property we utilize barrier functions, which are represented by NNs as well. We train the controller-NN and barrier-NN simultaneously, achieving a verification-in-the-loop synthesis. We provide a prototype tool nncontroller with a number of case studies. The experiment results confirm the feasibility and efficacy of our approach.
Complementarity problems, a class of mathematical optimization problems with orthogonality constraints, are widely used in many robotics tasks, such as locomotion and manipulation, due to their ability to model non-smooth phenomena (e.g., contact dyn amics). In this paper, we propose a method to analyze the stability of complementarity systems with neural network controllers. First, we introduce a method to represent neural networks with rectified linear unit (ReLU) activations as the solution to a linear complementarity problem. Then, we show that systems with ReLU network controllers have an equivalent linear complementarity system (LCS) description. Using the LCS representation, we turn the stability verification problem into a linear matrix inequality (LMI) feasibility problem. We demonstrate the approach on several examples, including multi-contact problems and friction models with non-unique solutions.
This paper presents a novel scalable framework to solve the optimization of a nonlinear system with differential algebraic equation (DAE) constraints that enforce the asymptotic stability of the underlying dynamic model with respect to certain distur bances. Existing solution approaches to analogous DAE-constrained problems are based on discretization of DAE system into a large set of nonlinear algebraic equations representing the time-marching schemes. These approaches are not scalable to large size models. The proposed framework, based on LaSalles invariance principle, uses convex Lyapunov functions to develop a novel stability certificate which consists of a limited number of algebraic constraints. We develop specific algorithms for two major types of nonlinearities, namely Lure, and quasi-polynomial systems. Quadratic and convex-sum-of-square Lyapunov functions are constructed for the Lure-type and quasi-polynomial systems respectively. A numerical experiment is performed on a 3-generator power network to obtain a solution for transient-stability-constrained optimal power flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا