ﻻ يوجد ملخص باللغة العربية
Motivated by a recent inelastic neutron scattering experiment on $mathrm{YbMgGaO}_4$ cite{William2019}, we reinvestigate the homogeneous spin model on the triangular lattice. Using the cluster mean-field theory, we study the phase diagram and the magnetic-field-induced phase transition. We find that the phase boundary between the stripe state and the $120^{circ}$ antiferromagnetic state is broadened by the magnetic field, leading to a field-induced phase transition. This phase transition is suppressed by the next-nearest neighbor exchange interaction $J_2/J_1$ and vanishes as $J_2/J_1>0.13$. We find a parameter space at $J_2/J_1=0.1$, in which the field-induce transition can be achieved and the deviation of theoretical spin excitation energies from experimental data is only $5.4%$. Our results imply that an effective homogeneous spin model still works in $mathrm{YbMgGaO}_4$.
Single-crystal x-ray diffraction, density-functional band-structure calculations, and muon spin relaxation ($mu$SR) are used to probe pressure evolution of the triangular spin-liquid candidate YbMgGaO$_4$. The rhombohedral crystal structure is retain
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers do
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success
We report magnetization, heat capacity, thermal expansion, and magnetostriction measurements down to millikelvin temperatures on the triangular antiferromagnet YbMgGaO$_4$. Our data exclude the formation of the distinct $frac13$ plateau phase observe
The spin-1/2 triangular lattice antiferromagnet YbMgGaO$_{4}$ has attracted recent attention as a quantum spin-liquid candidate with the possible presence of off-diagonal anisotropic exchange interactions induced by spin-orbit coupling. Whether a qua