ﻻ يوجد ملخص باللغة العربية
We study 6d E-string theory with defects on a circle. Our basic strategy is to apply the geometric transition to the supersymmetric gauge theories. First, we calculate the partition functions of the 5d SU(3)$_0$ gauge theory with 10 flavors, which is UV-dual to the 5d Sp(2) gauge theory with 10 flavors, based on two different 5-brane web diagrams, and check that two partition functions agree with each other. Then, by utilizing the geometric transition, we find the surface defect partition function for E-string on $mathbb{R}^4times T^2$. We also discuss that our result is consistent with the elliptic genus. Based on the result, we show how the global symmetry is broken by the defects, and discuss that the breaking pattern depends on where/how we insert the defects.
We discuss Type IIB 5-brane configurations for 5d $mathcal{N}=1$ gauge theories with hypermultiplets in the rank-3 antisymmetric representation and with various other hypermultiplets, which flow to a UV fixed point at the infinite coupling. We propos
We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of arXiv:1709.01928. Using the O-vertex it is possible to
We consider Type IIB 5-brane configurations for 5d rank 2 superconformal theories which are classified recently by geometry in arXiv:1801.04036. We propose all the 5-brane web diagrams for these rank 2 theories and show dualities between some of diff
We propose 5-brane webs for 5d $mathcal{N}=1$ $G_2$ gauge theories. From a Higgsing of the $SO(7)$ gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure $G_2$ gauge theory u
Magnetic quivers have led to significant progress in the understanding of gauge theories with 8 supercharges at UV fixed points. For a given low-energy gauge theory realised via a Type II brane construction, there exist magnetic quivers for the Higgs