ﻻ يوجد ملخص باللغة العربية
Few-shot segmentation focuses on the generalization of models to segment unseen object instances with limited training samples. Although tremendous improvements have been achieved, existing methods are still constrained by two factors. (1) The information interaction between query and support images is not adequate, leaving intra-class gap. (2) The object categories at the training and inference stages have no overlap, leaving the inter-class gap. Thus, we propose a framework, BriNet, to bridge these gaps. First, more information interactions are encouraged between the extracted features of the query and support images, i.e., using an Information Exchange Module to emphasize the common objects. Furthermore, to precisely localize the query objects, we design a multi-path fine-grained strategy which is able to make better use of the support feature representations. Second, a new online refinement strategy is proposed to help the trained model adapt to unseen classes, achieved by switching the roles of the query and the support images at the inference stage. The effectiveness of our framework is demonstrated by experimental results, which outperforms other competitive methods and leads to a new state-of-the-art on both PASCAL VOC and MSCOCO dataset.
The softmax loss and its variants are widely used as objectives for embedding learning, especially in applications like face recognition. However, the intra- and inter-class objectives in the softmax loss are entangled, therefore a well-optimized int
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the tr
Currently, the state-of-the-art methods treat few-shot semantic segmentation task as a conditional foreground-background segmentation problem, assuming each class is independent. In this paper, we introduce the concept of meta-class, which is the met
Recent works on interactive video object cutout mainly focus on designing dynamic foreground-background (FB) classifiers for segmentation propagation. However, the research on optimally removing errors from the FB classification is sparse, and the er
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN