ﻻ يوجد ملخص باللغة العربية
Random sampling of graph partitions under constraints has become a popular tool for evaluating legislative redistricting plans. Analysts detect partisan gerrymandering by comparing a proposed redistricting plan with an ensemble of sampled alternative plans. For successful application, sampling methods must scale to large maps with many districts, incorporate realistic legal constraints, and accurately and efficiently sample from a selected target distribution. Unfortunately, most existing methods struggle in at least one of these three areas. We present a new Sequential Monte Carlo (SMC) algorithm that draws representative redistricting plans from a realistic target distribution of choice. Because it samples directly, the SMC algorithm can efficiently explore the relevant space of redistricting plans better than the existing Markov chain Monte Carlo algorithms that yield dependent samples. Our algorithm can simultaneously incorporate several constraints commonly imposed in real-world redistricting problems, including equal population, compactness, and preservation of administrative boundaries. We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated. We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania. We find that the proposed algorithm is roughly 40 times more efficient in sampling from the target distribution than a state-of-the-art MCMC algorithm. Open-source software is available for implementing the proposed methodology.
We use a multivariate formulation of sequential Monte Carlo filter that utilizes mechanistic models for Ebola virus propagation and available incidence data to simultaneously estimate the disease progression states and the model parameters. This meth
Decision making for dynamic systems is challenging due to the scale and dynamicity of such systems, and it is comprised of decisions at strategic, tactical, and operational levels. One of the most important aspects of decision making is incorporating
The US Census Bureau plans to protect the privacy of 2020 Census respondents through its Disclosure Avoidance System (DAS), which attempts to achieve differential privacy guarantees by adding noise to the Census microdata. By applying redistricting s
This paper explores the application of methods from information geometry to the sequential Monte Carlo (SMC) sampler. In particular the Riemannian manifold Metropolis-adjusted Langevin algorithm (mMALA) is adapted for the transition kernels in SMC. S
Sequential Monte Carlo (SMC), also known as particle filters, has been widely accepted as a powerful computational tool for making inference with dynamical systems. A key step in SMC is resampling, which plays the role of steering the algorithm towar