ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman scattering investigation of the pressure induced structural phase transition in LaCrO3

88   0   0.0 ( 0 )
 نشر من قبل Venkata Bhadram
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the pressure dependence of perovskite distortions in rare-earth (R) orthochromites (RCrO3) probed using Raman scattering in order to investigate the origin of structural transition from orthorhombic Pnma to rhombohedral R-3C phase in LaCrO3. The pressure induced changes in octahedral tilt modes demonstrates that tilt distortions are suppressed in LaCrO3 and are enhanced in the remaining members of RCrO3 family. This crossover between the two opposite pressure behaviors occurs at a critical R-ion radius of 1.20 {AA}. We attempted to establish the relation between this unusual crossover and compressibility at Cr- and R-sites by probing Raman phonon modes sensitive to the mean bond strength of Cr-O and R-O respectively. Finally, we study the bond-length splitting of both CrO6 and RO12 polyhedra to ascertain the role of polyhedral self distortion in determining the pressure dependent evolution of perovskite distortions.



قيم البحث

اقرأ أيضاً

We report the evolution of charge density wave states under pressure for two NbS3 phases triclinic (phase I) and monoclinic (phase II) at room temperature. Raman and X-ray diffraction (XRD) techniques are applied. The x-ray studies on the monoclinic phase under pressure show a compression of the lattice at different rates below and above 7 GPa but without a change in space group symmetry. The Raman spectra of the two phases evolve similarly with pressure; all peaks almost disappear in the 6-8 GPa range, indicating a transition from an insulating to a metallic state, and peaks at new positions appear above 8 GPa. The results suggest suppression of the ambient charge-density waves and their subsequent recovery with new orderings above 8 GPa.
The crystal structures of the quasi-one-dimensional organic salts (TMTTF)$_2$PF$_6$ and (TMTSF)$_2$PF$_6$ were studied by pressure-dependent x-ray diffraction up to 10 GPa at room temperature. The unit-cell parameters exhibit a clear anomaly due to a structural phase transition at 8.5 and 5.5 GPa for (TMTTF)$_2$PF$_6$ and (TMTSF)$_2$PF$_6$, respectively.
Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~ 60 GPa using multiple experimental techniques and ab -initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.
The pressure-induced phase transition of bismuth telluride, Bi2Te3, has been studied by synchrotron x-ray diffraction measurements at room temperature using a diamond-anvil cell (DAC) with loading pressures up to 29.8 GPa. We found a high-pressure bo dy-centered cubic (bcc) phase in Bi2Te3 at 25.2 GPa, which is denoted as phase IV, and this phase apperars above 14.5 GPa. Upon releasing the pressure from 29.8 GPa, the diffraction pattern changes with pressure hysteresis. The original rhombohedral phase is recovered at 2.43 GPa. The bcc structure can explain the phase IV peaks. We assumed that the structural model of phase IV is analogous to a substitutional binary alloy; the Bi and Te atoms are distributed in the bcc-lattice sites with space group Im-3m. The results of Rietveld analysis based on this model agree well with both the experimental data and calculated results. Therefore, the structure of phase IV in Bi2Te3 can be explained by a solid solution with a bcc lattice in the Bi-Te (60 atomic% tellurium) binary system.
Recent progress in understanding the electronic band topology and emergent topological properties encourage us to reconsider the band structure of well-known materials including elemental substances. Controlling such a band topology by external field is of particular interest from both fundamental and technological view point. Here we report the pressure-induced topological phase transition from a semiconductor to a Weyl semimetal in elemental tellurium probed by transport measurements. Pressure variation of the periods of Shubnikov-de Haas oscillations, as well as oscillations phases, shows an anomaly around the pressure theoretically predicted for topological phase transition. This behavior can be well understood by the pressure-induced band deformation and resultant band crossing effect. Moreover, effective cyclotron mass is reduced toward the critical pressure, potentially reflecting the emergence of massless linear dispersion. The present result paves the way for studying the electronic band topology in well-known compounds and topological phase transition by the external field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا