ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey of spatially and temporally resolved radio frequency interference in the FM band at the Murchison Radio-astronomy Observatory

195   0   0.0 ( 0 )
 نشر من قبل Steven Tingay
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first survey of radio frequency interference (RFI) at the future site of the low frequency Square Kilometre Array (SKA), the Murchison Radio-astronomy Observatory (MRO), that both temporally and spatially resolves the RFI. The survey is conducted in a 1 MHz frequency range within the FM band, designed to encompass the closest and strongest FM transmitters to the MRO (located in Geraldton, approximately 300 km distant). Conducted over approximately three days using the second iteration of the Engineering Development Array in an all-sky imaging mode, we find a range of RFI signals. We are able to categorise the signals into: those received directly from the transmitters, from their horizon locations; reflections from aircraft (occupying approximately 13% of the observation duration); reflections from objects in Earth orbit; and reflections from meteor ionisation trails. In total we analyse 33,994 images at 7.92 s time resolution in both polarisations with angular resolution of approximately 3.5 deg., detecting approximately forty thousand RFI events. This detailed breakdown of RFI in the MRO environment will enable future detailed analyses of the likely impacts of RFI on key science at low radio frequencies with the SKA.



قيم البحث

اقرأ أيضاً

We report on the design, deployment, and first results from a scintillation detector deployed at the Murchison Radio-astronomy Observatory (MRO). The detector is a prototype for a larger array -- the Square Kilometre Array Particle Array (SKAPA) -- p lanned to allow the radio-detection of cosmic rays with the Murchison Widefield Array and the low-frequency component of the Square Kilometre Array. The prototype design has been driven by stringent limits on radio emissions at the MRO, and to ensure survivability in a desert environment. Using data taken from Nov. 2018 to Feb. 2019, we characterize the detector response while accounting for the effects of temperature fluctuations, and calibrate the sensitivity of the prototype detector to through-going muons. This verifies the feasibility of cosmic ray detection at the MRO. We then estimate the required parameters of a planned array of eight such detectors to be used to trigger radio observations by the Murchison Widefield Array.
The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) det ection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFARs radio environment, but adequate detection of RFI is still required before data can be analysed. We include specific recommendations designed to make the SKA more robust to RFI, including: the availability of sufficient computing power for RFI detection; accounting for RFI in the receiver design; a smooth band-pass response; and the capability of RFI detection at high time and frequency resolution (second and kHz-scale respectively).
In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal pat hs. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise, decreasing the sensitivity. The residual RFI that remains in the output of single-reference cancelers (but not dual-reference cancelers) sets a nonzero noise floor that does not act like random system noise and may limit the achievable sensitivity. Thus, dual-reference cancelers often result in superior cancellation. Dual-reference precorrelation cancelers require a double-canceler setup to be useful and to give equivalent results to dual-reference postcorrelation cancelers.
We detail new techniques for analysing ionospheric activity, using Epoch of Reionisation (EoR) datasets obtained with the Murchison Widefield Array (MWA), calibrated by the `Real-Time System (RTS). Using the high spatial- and temporal-resolution info rmation of the ionosphere provided by the RTS calibration solutions over 19 nights of observing, we find four distinct types of ionospheric activity, and have developed a metric to provide an `at a glance value for data quality under differing ionospheric conditions. For each ionospheric type, we analyse variations of this metric as we reduce the number of pierce points, revealing that a modest number of pierce points is required to identify the intensity of ionospheric activity; it is possible to calibrate in real-time, providing continuous information of the phase screen. We also analyse temporal correlations, determine diffractive scales, examine the relative fractions of time occupied by various types of ionospheric activity, and detail a method to reconstruct the total electron content responsible for the ionospheric data we observe. These techniques have been developed to be instrument agnostic, useful for application on LOFAR and SKA-Low.
108 - T. Dyson , H. C. Chiang , E. Egan 2020
The frequencies of interest for redshifted 21 cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122 hours of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20-125 MHz. In particular, the FM broadcast band (88-108 MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا