ﻻ يوجد ملخص باللغة العربية
This paper presents a detailed theoretical analysis of the three stochastic approximation proximal gradient algorithms proposed in our companion paper [49] to set regularization parameters by marginal maximum likelihood estimation. We prove the convergence of a more general stochastic approximation scheme that includes the three algorithms of [49] as special cases. This includes asymptotic and non-asymptotic convergence results with natural and easily verifiable conditions, as well as explicit bounds on the convergence rates. Importantly, the theory is also general in that it can be applied to other intractable optimisation problems. A main novelty of the work is that the stochastic gradient estimates of our scheme are constructed from inexact proximal Markov chain Monte Carlo samplers. This allows the use of samplers that scale efficiently to large problems and for which we have precise theoretical guarantees.
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE
Consider a setting with $N$ independent individuals, each with an unknown parameter, $p_i in [0, 1]$ drawn from some unknown distribution $P^star$. After observing the outcomes of $t$ independent Bernoulli trials, i.e., $X_i sim text{Binomial}(t, p_i
The purpose of this thesis is to develop new theories on high-dimensional structured signal recovery under a rather weak assumption on the measurements that only a finite number of moments exists. High-dimensional recovery has been one of the emergin
We prove a Bernstein-von Mises theorem for a general class of high dimensional nonlinear Bayesian inverse problems in the vanishing noise limit. We propose a sufficient condition on the growth rate of the number of unknown parameters under which the
Empirical likelihood approach is one of non-parametric statistical methods, which is applied to the hypothesis testing or construction of confidence regions for pivotal unknown quantities. This method has been applied to the case of independent ident