ﻻ يوجد ملخص باللغة العربية
Circular dichroism (CD) caused by the response of a chiral object to circularly polarized light has been well established, and the strong CD of plasmonic meta-molecules has also become of interest in recent years; however, their response if the light also has orbital angular momentum is unclear. In this paper, the dichroism of a plasmonic cuboid-protuberance chiral structure under the illumination of a light beam with both orbital and spin angular momentums is numerically investigated. Distinguished spectra are observed under the different momentums. The circular dichroism under the combination of vortex beam and light spin is enhanced. This phenomenon is attributed to the partial spatial excitation of the nanoparticle, and the strong dichroism is simultaneously caused because of the interaction of the induced electric and magnetic modes and other higher-order modes caused by the partial excitation of the vortex beam. This research provides further insight into chiral light-matter interactions and the dichroism of light with orbital angular momentum.
We propose a highly efficient atomically-resolved mode of electron magnetic chiral dichroism. This method exploits the recently introduced orbital angular momentum spectrometer to analyze the inelastically scattered electrons allowing for simultaneou
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with
Lights orbital angular momentum (OAM) is an unbounded degree of freedom emerging in helical beams that appears very advantageous technologically. Using a chiral microlaser, i.e. an integrated device that allows generating an emission carrying a net O
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of free
Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the single or colloida