ﻻ يوجد ملخص باللغة العربية
KIC 10685175 (TIC 264509538) was discovered to be a rapidly oscillating Ap star from {it Kepler} long cadence data using super-Nyquist frequency analysis. It was re-observed by TESS with 2-min cadence data in Sectors 14 and 15. We analyzed the TESS light curves, finding that the previously determined frequency is a Nyquist alias. The revised pulsation frequency is $191.5151 pm 0.0005$d$^{-1}$ ($P = 7.52$min) and the rotation frequency is $0.32229 pm 0.00005$d$^{-1}$ ($P_{rm rot} = 3.1028$d). The star is an oblique pulsator with pulsation amplitude modulated by the rotation, reaching pulsation amplitude maximum at the time of the rotational light minimum. The oblique pulsation generates a frequency quintuplet split by exactly the rotation frequency. The phases of sidelobes, the pulsation phase modulation, and a spherical harmonic decomposition all show this star to be pulsating in a distorted quadrupole mode. Following the oblique pulsator model, we calculated the rotation inclination $i$ and magnetic oblique $beta$ of this star, which provide detailed information of pulsation geometry. The $i$ and $beta$ derived by the best fit of pulsation amplitude and phase modulation through a theoretical model differ from those calculated for a pure quadrupole, indicating the existence of strong magnetic distortion. The model also predicts the polar magnetic field strength is as high as about 6kG which is predicted to be observed in a high resolution spectrum of this star.
We analyse the fifth roAp star reported in the Kepler field, KIC 7582608, discovered with the SuperWASP project. The object shows a high frequency pulsation at 181.7324 d$^{-1}$ (P=7.9 min) with an amplitude of 1.45 mmag, and low frequency rotational
We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has
It has long been suspected that tidal forces in close binary stars could modify the orientation of the pulsation axis of the constituent stars. Such stars have been searched for, but until now never detected. Here we report the discovery of tidally t
The shape of light cures of fundamental-mode and of first-overtone pulsators, as observed in RR~Lyrae variables and Cepheids, differ characteristically. The stellar physical origin of the morphological differences is not well documented and the topic
We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (~1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes ex