ﻻ يوجد ملخص باللغة العربية
Time reversal invariance (TRI) of particles systems has many consequences, among~which the celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because for a long time it was believed that (TRI) dos not hold in presence of a magnetic field, a modification of such relations was proposed by Casimir in 1945. Only in the last decade, the~strict traditional notion of reversibility that led to Casimirs work has been questioned. It was then found that other symmetries can be used, which allow the Onsager reciprocal relations to hold without modification. In this paper we advance this investigation for classical Hamiltonian systems, substantially increasing the number of symmetries that yield TRI in presence of a magnetic field. We~first deduce the most general form of a generalized time reversal operation on the phase space of such a system; secondly, we express sufficient conditions on the magnetic field which ensure TRI. Finally, we examine common examples from statistical mechanics and molecular dynamics. Our main result is that TRI holds in a much wider generality than previously believed, partially explaining why no experimental violation of Onsager relations has so far been reported.
For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy when the system has a half-odd-integer spin and the time reversal operator obeys Theta^2=-1, but no such a degeneracy exists when Theta^2=+1. Here we point out that for non-h
We extend to quantum mechanical systems results previously obtained for classical mechanical systems, concerning time reversibility in presence of a magnetic field. As in the classical case, results like the Onsager reciprocal relations are consequen
We study the entropy production in non-equilibrium quantum systems without dissipation, which is generated exclusively by the spontaneous breaking of time-reversal invariance. Systems which preserve the total energy and particle number and are in con
We provide numerical evidence that the Onsager symmetry remains valid for systems subject to a spatially dependent magnetic field, in spite of the broken time-reversal symmetry. In addition, for the simplest case in which the field strength varies on
Time-reversal symmetry of most conservative forces constrains the properties of linear transport in most physical systems. Here, I study the efficiency of energy transfer in oscillator networks where time-reversal symmetry is broken locally by Lorent