ﻻ يوجد ملخص باللغة العربية
Quantum curves arise from Seiberg-Witten curves associated to 4d $mathcal{N}=2$ gauge theories by promoting coordinates to non-commutative operators. In this way the algebraic equation of the curve is interpreted as an operator equation where a Hamiltonian acts on a wave-function with zero eigenvalue. We find that this structure generalises when one considers torus-compactified 6d $mathcal{N}=(1,0)$ SCFTs. The corresponding quantum curves are elliptic in nature and hence the associated eigenvectors/eigenvalues can be expressed in terms of Jacobi forms. In this paper we focus on the class of 6d SCFTs arising from M5 branes transverse to a $mathbb{C}^2/mathbb{Z}_k$ singularity. In the limit where the compactified 2-torus has zero size, the corresponding 4d $mathcal{N}=2$ theories are known as class $mathcal{S}_k$. We explicitly show that the eigenvectors associated to the quantum curve are expectation values of codimension 2 surface operators, while the corresponding eigenvalues are codimension 4 Wilson surface expectation values.
We study the Coulomb branch of class $mathcal{S}_k$ $mathcal{N} = 1$ SCFTs by constructing and analyzing their spectral curves.
Even though for generic $mathcal{N}=1$ theories it is not possible to separate distinct branches of supersymmetric vacua, in this paper we study a special class of $mathcal{N}=1$ SCFTs, these of Class $mathcal{S}_k$ for which it is possible to define
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $
We propose a generalization of S-folds to 4d $mathcal{N}=2$ theories. This construction is motivated by the classification of rank one 4d $mathcal{N}=2$ super-conformal field theories (SCFTs), which we reproduce from D3-branes probing a configuration
The gravitational $mathcal{S}$-matrix defined with an infrared (IR) cutoff factorizes into hard and soft factors. The soft factor is universal and contains all the IR and collinear divergences. Here we show, in a momentum space basis, that the intric