The Distribution and Evolution of Quasar Proximity Zone Sizes


الملخص بالإنكليزية

In this paper, we study the sizes of quasar proximity zones with synthetic quasar absorption spectra obtained by post-processing a Cosmic Reionization On Computers (CROC) simulation. CROC simulations have both relatively large box sizes and high spacial resolution, allowing us to resolve Lyman limit systems, which are crucial for modeling the quasar absorption spectra. We find that before reionization most quasar proximity zone sizes grow steadily for $sim 10$ Myr, while after reionization they grow rapidly but only for $sim 0.1$ Myr. We also find a slow growth of $R_{rm obs}$ with decreasing turn-on redshift. In addition, we find that $sim 1-2%$ of old quasars ($30$ Myr old) display extremely small proximity zone sizes ($<1$ proper Mpc), of which the vast majority are due to the occurrence of a damped Ly$alpha$ absorber (DLA) or a Lyman limit system (LLS) along the line of sight. These DLAs and LLSs are contaminated with metal, which offers a way to distinguish them from the normal proximity zones of young quasars.

تحميل البحث