ﻻ يوجد ملخص باللغة العربية
III-V solar cells dominate the high efficiency charts, but with significantly higher cost than other solar cells. Ultrathin III-V solar cells can exhibit lower production costs and immunity to short carrier diffusion lengths caused by radiation damage, dislocations, or native defects. Nevertheless, solving the incomplete optical absorption of sub-micron layers presents a challenge for light-trapping structures. Simple photonic crystals have high diffractive efficiencies, which are excellent for narrow-band applications. Random structures a broadband response instead but suffer from low diffraction efficiencies. Quasirandom (hyperuniform) structures lie in between providing high diffractive efficiency over a target wavelength range, broader than simple photonic crystals, but narrower than a random structure. In this work, we present a design method to evolve a simple photonic crystal into a quasirandom structure by modifying the spatial-Fourier space in a controlled manner. We apply these structures to an ultrathin GaAs solar cell of only 100 nm. We predict a photocurrent for the tested quasirandom structure of 25.3 mA/cm$^2$, while a planar structure would be limited to 16.1 mA/cm$^2$. The modified spatial-Fourier space in the quasirandom structure increases the amount of resonances, with a progression from discrete number of peaks to a continuum in the absorption. The enhancement in photocurrent is stable under angle variations because of this continuum. We also explore the robustness against changes in the real-space distribution of the quasirandom structures using different numerical seeds, simulating variations in a self-assembly method.
Strong interference in ultrathin film semiconductor absorbers on metallic back reflectors has been shown to enhance the light harvesting efficiency of solar cell materials. However, metallic back reflectors are not suitable for tandem cell configurat
Semi-transparent photovoltaics (ST-PV) provide smart spatial solutions to integrate solar cells into already-built areas. Here, we study the potential of semiconductor nanowires (NWs) as promising ST-PV. We perform FDTD simulations for different PV m
Analog computing has emerged as a promising candidate for real-time and parallel continuous data processing. This paper presents a reciprocal way for realizing asymmetric optical transfer functions (OTFs) in the reflection side of the on-axis process
While perovskite solar cells (PSCs) are now reaching high power conversion efficiencies (PCEs), further performance improvement requires a fine management and an optimization of the light pathway and harvesting in the cells. These go through an accur
Optical limiters are nonlinear devices that feature decreasing transmittance with increasing incident optical intensity, and thus can protect sensitive components from high-intensity illumination. The ideal optical limiter reflects rather than absorb