ﻻ يوجد ملخص باللغة العربية
Lifted Reed-Solomon codes and multiplicity codes are two classes of evaluation codes that allow for the design of high-rate codes that can recover every codeword or information symbol from many disjoint sets. Recently, the underlying approaches have been combined to construct lifted bi-variate multiplicity codes, that can further improve on the rate. We continue the study of these codes by providing lower bounds on the rate and distance for lifted multiplicity codes obtained from polynomials in an arbitrary number of variables. Specifically, we investigate a subcode of a lifted multiplicity code formed by the linear span of $m$-variate monomials whose restriction to an arbitrary line in $mathbb{F}_q^m$ is equivalent to a low-degree uni-variate polynomial. We find the tight asymptotic behavior of the fraction of such monomials when the number of variables $m$ is fixed and the alphabet size $q=2^ell$ is large. For some parameter regimes, lifted multiplicity codes are then shown to have a better trade-off between redundancy and the number of disjoint recovering sets for every codeword or information symbol than previously known constructions. Additionally, we present a local self-correction algorithm for lifted multiplicity codes.
In this paper, we construct codes for local recovery of erasures with high availability and constant-bounded rate from the Hermitian curve. These new codes, called Hermitian-lifted codes, are evaluation codes with evaluation set being the set of $mat
We define wedge-lifted codes, a variant of lifted codes, and we study their locality properties. We show that (taking the trace of) wedge-lifted codes yields binary codes with the $t$-disjoint repair property ($t$-DRGP). When $t = N^{1/2d}$, where $N
Lifted Reed-Solomon codes, a subclass of lifted affine-invariant codes, have been shown to be of high rate while preserving locality properties similar to generalized Reed-Muller codes, which they contain as subcodes. This work introduces a simple bo
Guo, Kopparty and Sudan have initiated the study of error-correcting codes derived by lifting of affine-invariant codes. Lifted Reed-Solomon (RS) codes are defined as the evaluation of polynomials in a vector space over a field by requiring their res
In this article we count the number of generalized Reed-Solomon (GRS) codes of dimension k and length n, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of 3-dimensional MDS codes of length n=6,7,8,9.