ﻻ يوجد ملخص باللغة العربية
We report on a detailed study of the terahertz (THz) photoresistivity in a strained HgTe three-dimensional topological insulator (3D TI) for all Fermi level positions: inside the conduction and valence bands, and in the bulk gap. In the presence of a magnetic field we detect a resonance corresponding to the cyclotron resonance (CR) in the top surface Dirac fermions (DF) and examine the nontrivial dependence of the surface state cyclotron mass on the Fermi level position. We also detect additional resonant features at moderate electron densities and demonstrate that they are caused by the mixing of surface DF and bulk electrons. At high electron densities, we observe THz radiation induced 1/B-periodic low-field magneto-oscillations coupled to harmonics of the CR and demonstrate that they have a common origin with microwave-induced resistance oscillations (MIRO) previously observed in high mobility GaAs-based heterostructures. This observation attests the superior quality of 2D electron system formed by helical surface states in strained HgTe films.
We report on the observation of cyclotron resonance induced photocurrents, excited by continuous wave terahertz radiation, in a 3D topological insulator (TI) based on an 80 nm strained HgTe film. The analysis of the photocurrent formation is supporte
From the analysis of the cyclotron resonance, we experimentally obtain the band structure of the three-dimensional topological insulator based on a HgTe thin film. Top gating was used to shift the Fermi level in the film, allowing us to detect separa
The most interesting experimental results obtained in studies of 2D and 3D topological insulators (TIs) based on HgTe quantum wells and films are reviewed. In the case of 2D TIs, these include the observation of nonlocal ballistic and diffusion trans
The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of
Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and