ﻻ يوجد ملخص باللغة العربية
The notion of multivariate total positivity has proved to be useful in finance and psychology but may be too restrictive in other applications. In this paper we propose a concept of local association, where highly connected components in a graphical model are positively associated and study its properties. Our main motivation comes from gene expression data, where graphical models have become a popular exploratory tool. The models are instances of what we term mixed convex exponential families and we show that a mixed dual likelihood estimator has simple exact properties for such families as well as asymptotic properties similar to the maximum likelihood estimator. We further relax the positivity assumption by penalizing negative partial correlations in what we term the positive graphical lasso. Finally, we develop a GOLAZO algorithm based on block-coordinate descent that applies to a number of optimization procedures that arise in the context of graphical models, including the estimation problems described above. We derive results on existence of the optimum for such problems.
Though Gaussian graphical models have been widely used in many scientific fields, limited progress has been made to link graph structures to external covariates because of substantial challenges in theory and computation. We propose a Gaussian graphi
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of mode
Modeling of longitudinal data often requires diffusion models that incorporate overall time-dependent, nonlinear dynamics of multiple components and provide sufficient flexibility for subject-specific modeling. This complexity challenges parameter in
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
In this paper, we present a new Marshall-Olkin exponential shock model. The new construction method gives the proposed model further ability to allocate the common joint shock on each of the components, making it suitable for application in fields li