ﻻ يوجد ملخص باللغة العربية
Using the results of the IllustrisTNG simulation we estimate the dispersion measure which may be attributed to halos of so called host galaxies of fast radio bursts sources (FRBs). Our results show that in contradiction to assumptions used to show the applicability of FRBs to cosmological tests, both the dispersion measure and its standard deviation calculated for host galaxies with given stellar mass in general increase with the redshift. The effect is not strong and cosmological tests using FRBs will be possible, but to preserve the level of statistical uncertainty the number of FRBs with known redshift in a sample should be increased by 15%--35% depending on circumstances. We show various statistical characteristics of ionized gas surrounding galaxies, the resulting dispersion measure and their dependence on the host galaxy stellar mass, redshift, and the projected distance of a FRB source from its host center. Cosmology: theory -- Galaxies: halos -- large-scale structure of Universe
We investigate the dispersion measure(DM) and scattering of FRBs by the intergalactic-medium(IGM), foreground and host halos, using cosmological hydrodynamical simulation. We find that the median DM caused by foreground halos is around 30% of that ca
We use multi-band imagery data from the Sloan Digital Sky Survey (SDSS) to measure projected distances of 302 supernova type Ia (SNIa) from the centre of their host galaxies, normalized to the galaxys brightness scale length, with a Bayesian approach
We calculate the dispersion measures (DMs) contributed by host galaxies of fast radio bursts (FRBs). Based on a few host galaxy observations, a large sample of galaxy with similar properties to observed ones has been selected from the IllustrisTNG si
Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyze the dynamics traced by stars belonging to the Brightest Cluster Galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and
We search for host galaxy candidates of nearby fast radio bursts (FRBs), FRB 180729.J1316+55, FRB 171020, FRB 171213, FRB 180810.J1159+83, and FRB 180814.J0422+73 (the second repeating FRB). We compare the absolute magnitudes and the expected host di