ﻻ يوجد ملخص باللغة العربية
Three-body interactions are ubiquitous in astrophysics. For instance, Kozai-Lidov oscillations in hierarchical triple systems have been studied extensively and applied to a wide range of astrophysical systems. However, mildly-hierarchical triples also play an important role, but they are less explored. In this work we consider the secular dynamics of a test particle in a mildly-hierarchical configuration. We find the limit within which the secular approximation is reliable, present resonances and chaotic regions using surface of sections, and characterize regions of phase space that allow large eccentricity and inclination variations. Finally, we apply the secular results to the outer solar system. We focus on the distribution of extreme trans-neptunian objects (eTNOs) under the perturbation of a possible outer planet (Planet-9), and find that in addition to a low inclination Planet-9, a polar or a counter-orbiting one could also produce pericenter clustering of eTNOs, while the polar one leads to a wider spread of eTNO inclinations.
We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable m
Time series of spectroscopic, speckle-interferometric, and optical long-baseline-interferometric observations confirm that $ u$ Gem is a hierarchical triple system. It consists of an inner binary composed of two B-type stars and an outer classical Be
We report the discovery of a compact triply eclipsing triple star system in the southern continuous viewing zone of the TESS space telescope. TIC 278825952 is a previously unstudied, circular eclipsing binary with a period of 4.781 days with a tertia
Disks of bodies orbiting a much more massive central object are extremely common in astrophysics. When the orbits comprising such disks are eccentric, we show they are susceptible to a new dynamical instability. Gravitational forces between bodies in
A foundational goal of the Large Synoptic Survey Telescope (LSST) is to map the Solar System small body populations that provide key windows into understanding of its formation and evolution. This is especially true of the populations of the Outer So