ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2020bqj: a Type Ibn supernova with a long lasting peak plateau

90   0   0.0 ( 0 )
 نشر من قبل Erik Kool
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Type Ibn supernovae are a rare class of stripped envelope supernovae interacting with a helium-rich CSM. The majority of the SNe Ibn reported display a surprising homogeneity in their fast lightcurves and starforming hosts. Aims: We present the discovery and study of SN 2020bqj (ZTF20aalrqbu), a SN Ibn with a long-duration peak plateau lasting 40 days and hosted by a faint low-mass galaxy. We aim to explain its peculiar properties using an extensive data set. Methods: We compare the evolution of SN 2020bqj with SNe Ibn from the literature. We fit the bolometric and multi-band lightcurves with different powering mechanism models. Results: The risetime, peak magnitude and spectral features of SN 2020bqj are consistent with those of most SNe Ibn, but the SN is a clear outlier based on its bright, long-lasting peak plateau and low host mass. We show through modeling that the lightcurve can be powered predominantly by shock heating from the interaction of the SN ejecta and a dense CSM. The peculiar Type Ibn SN 2011hw is a close analog to SN 2020bqj, suggesting a similar progenitor and CSM scenario. In this scenario a very massive progenitor star in the transitional phase between a luminous blue variable and a compact Wolf-Rayet star undergoes core-collapse, embedded in a dense helium-rich CSM with an elevated opacity compared to normal SNe Ibn, due to the presence of residual hydrogen. This scenario is consistent with the observed properties of SN 2020bqj and the modeling results. Conclusions: SN 2020bqj is a compelling example of a transitional SN Ibn/IIn based on not only its spectral features, but also its lightcurve, host galaxy properties and the inferred progenitor properties. The strong similarity with SN 2011hw suggests this subclass may be the result of a progenitor in a stellar evolution phase that is distinct from those of progenitors of regular SNe Ibn.



قيم البحث

اقرأ أيضاً

We present optical photometry and spectroscopy from about a week after explosion to $sim$272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1$pm$0.2 mag at 50 d since explosion and has a long plateau lasting for $sim$123 d. The distance to the SN is estimated to be 34.8$pm$0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H-Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M$_odot$. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusuall y long, lasting for about 130 days after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the $^{56}$Ni mass produced as $0.046 pm 0.015,{rm M}_{sun}$. We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as $D=19.8 pm 3.0$ Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour ($(V-I)_0 = 0.85$ mag). Assuming it is a single star, we estimate its initial mass as $M_{rm ZAMS}=20,{rm M}_{sun}$. We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case we estimate the upper limit for the initial zero-age main sequence mass of the progenitor to be $sim 14-17,{rm M}_{sun}$. In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as $sim 0.55 times 10^{51}$~erg, the pre-explosion radius as $sim 400,{rm R}_{sun}$, and the ejected envelope mass as $sim 15,{rm M}_{sun}$, which implies that the mass of the progenitor before explosion was $sim 16.5-17,{rm M}_{sun}$.
We present photometric and spectroscopic observations of the type Ibn supernova (SN) 2019uo, the second ever SN Ibn with flash ionization (He II, C III, N III) features in its early spectra. SN 2019uo displays a rapid post-peak luminosity decline of 0.1 mag d$^{-1}$ similar to most of the SNe Ibn, but is fainter ($M^V_{max} = -18.30 pm 0.24$ mag) than a typical SN Ibn and shows a color evolution that places it between SNe Ib and the most extreme SNe Ibn. SN 2019uo shows P-cygni He I features in the early spectra which gradually evolves and becomes emission dominated post peak. It also shows faster evolution in line velocities as compared to most other members of the type Ibn subclass. The bolometric light curve is fairly described by a $^{56}$Ni + circumstellar interaction model.
We present multi-band photometry and spectroscopy of SN 2018cuf, a Type IIP (P for plateau) supernova (SN) discovered by the Distance Less Than 40 Mpc survey (DLT40) within 24 hours of explosion. SN 2018cuf appears to be a typical Type IIP SN, with a n absolute $V$-band magnitude of $-$16.73 $pm$ 0.32 at maximum and a decline rate of 0.21 $pm$ 0.05 mag/50d during the plateau phase. The distance of the object is constrained to be 41.8 $pm$ 5.7 Mpc by using the expanding photosphere method. We use spectroscopic and photometric observations from the first year after the explosion to constrain the progenitor of SN 2018cuf using both hydrodynamic light curve modelling and late-time spectroscopic modelling. The progenitor of SN 2018cuf was most likely a red supergiant of about 14.5 $rm M_{odot}$ that produced 0.04 $pm$ 0.01 $rm M_{odot}$ $rm ^{56}Ni$ during the explosion. We also found $sim$ 0.07 $rm M_{odot}$ of circumstellar material (CSM) around the progenitor is needed to fit the early light curves, where the CSM may originate from pre-supernova outbursts. During the plateau phase, high velocity features at $rm sim 11000 km~s^{-1}$ are detected both in the optical and near-infrared spectra, supporting the possibility that the ejecta were interacting with some CSM. A very shallow slope during the post-plateau phase is also observed and it is likely due to a low degree of nickel mixing or the relatively high nickel mass in the SN.
We present results of the photometric (from 3 to 509 days past explosion) and spectroscopic (up to 230 days past explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The {it (B-V)} colour evolution of SN 2015as closely resemb le those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the $B$-band maximum about 22 days after the explosion, at an absolute magnitude of -16.82 $pm$ 0.18 mag. At $sim$ 75 days after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P~Cygni features due to He I lines appear at around 30 days after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN~2015as, we estimate a $^{56}$Ni mass of $sim$ 0.08 M$_{odot}$ and ejecta mass of 1.1--2.2 M$_{odot}$, which are similar to the values inferred for SN 2008ax. The quasi bolometric analytical light curve modelling suggests that the progenitor of SN 2015as has a modest mass ($sim$ 0.1 M$_{odot}$), a nearly-compact ($sim$ 0.05$times$10$^{13}$ cm) H envelope on top of a dense, compact ($sim$ 2$times$10$^{11}$ cm) and a more massive ($sim$ 1.2 M$_{odot}$) He core. The analysis of the nebular phase spectra indicates that $sim$ 0.44 M$_{odot}$ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main sequence progenitor mass of $sim$ 15 M$_{odot}$ or a Wolf Rayet star of 20 M$_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا