ﻻ يوجد ملخص باللغة العربية
We derive a thermodynamic first law for the electrically charged C-metric with vanishing cosmological constant. This spacetime describes a pair of identical accelerating black holes each pulled by a cosmic string. Treating the boost time of this spacetime as the canonical time, we find a thermodynamic first law in which every term has an unambiguous physical meaning. We then show how this first law can be derived using Noetherian methods in the covariant phase space formalism. We argue that the area of the acceleration horizon contributes to the entropy and that the appropriate notion of energy of this spacetime is a boost mass, which vanishes identically. The recovery of the Reissner-Nordstrom first law in the limit of small string tension is also demonstrated. Finally, we compute the action of the Euclidean section of the C-metric and show it agrees with the thermodynamic grand potential, providing an independent confirmation of the validity of our first law. We also briefly speculate on the significance of firewalls in this spacetime.
We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radi
We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted o
We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mas
In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ may not be
We discuss the connection between different entropies introduced for black hole. It is demonstrated on the two-dimensional example that the (quantum) thermodynamical entropy of a hole coincides (including UV-finite terms) with its statistical-mechani