ﻻ يوجد ملخص باللغة العربية
Electrocardiogram (ECG) is the most widely used diagnostic tool to monitor the condition of the cardiovascular system. Deep neural networks (DNNs), have been developed in many research labs for automatic interpretation of ECG signals to identify potential abnormalities in patient hearts. Studies have shown that given a sufficiently large amount of data, the classification accuracy of DNNs could reach human-expert cardiologist level. However, despite of the excellent performance in classification accuracy, it has been shown that DNNs are highly vulnerable to adversarial noises which are subtle changes in input of a DNN and lead to a wrong class-label prediction with a high confidence. Thus, it is challenging and essential to improve robustness of DNNs against adversarial noises for ECG signal classification, a life-critical application. In this work, we designed a CNN for classification of 12-lead ECG signals with variable length, and we applied three defense methods to improve robustness of this CNN for this classification task. The ECG data in this study is very challenging because the sample size is limited, and the length of each ECG recording varies in a large range. The evaluation results show that our customized CNN reached satisfying F1 score and average accuracy, comparable to the top-6 entries in the CPSC2018 ECG classification challenge, and the defense methods enhanced robustness of our CNN against adversarial noises and white noises, with a minimal reduction in accuracy on clean data.
Automatic arrhythmia detection using 12-lead electrocardiogram (ECG) signal plays a critical role in early prevention and diagnosis of cardiovascular diseases. In the previous studies on automatic arrhythmia detection, most methods concatenated 12 le
We present a model for predicting electrocardiogram (ECG) abnormalities in short-duration 12-lead ECG signals which outperformed medical doctors on the 4th year of their cardiology residency. Such exams can provide a full evaluation of heart activity
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by e
In this paper, we present a novel Image Fusion Model (IFM) for ECG heart-beat classification to overcome the weaknesses of existing machine learning techniques that rely either on manual feature extraction or direct utilization of 1D raw ECG signal.
Objective: A novel structure based on channel-wise attention mechanism is presented in this paper. Embedding with the proposed structure, an efficient classification model that accepts multi-lead electrocardiogram (ECG) as input is constructed. Metho