ﻻ يوجد ملخص باللغة العربية
Human placenta is a complex and heterogeneous organ interfacing between the mother and the fetus that supports fetal development. Alterations to placental structural components are associated with various pregnancy complications. To reveal the heterogeneity among various placenta cell types in normal and diseased placentas, as well as elucidate molecular interactions within a population of placental cells, a new genomics technology called single cell RNA-Seq (or scRNA-seq) has been employed in the last couple of years. Here we review the principles of scRNA-seq technology, and summarize the recent human placenta studies at scRNA-seq level across gestational ages as well as in pregnancy complications such as preterm birth and preeclampsia. We list the computational analysis platforms and resources available for the public use. Lastly, we discuss the future areas of interest for placenta single cell studies, as well as the data analytics needed to accomplish them.
The chorionic plate (or fetal surface) of the human placenta is drawn as round, with the umbilical cord inserted roughly at the center, but variability of this shape is common. The average shape of the chorionic plate has never been established. The
While it is well-understood what a normal human placenta should look like, a deviation from the norm can take many possible shapes. In this paper we propose a mechanism for this variability based on the change in the structure of the vascular tree.
We present a version of Kleibers scaling law for fetus and placenta.
Background: This study aims to investigate whether maternal SARS-CoV-2 status affect placental pathology. Methods: A retrospective case-control study was conducted by reviewing charts and slides of placentas between April 1 to July 24, 2020. Clinical
Through the last decade, cold atmospheric plasma (CAP) has emerged as an innovative therapeutic option for cancer treatment. Recently, we have set up a potentially safe atmospheric pressure plasma jet device that displays antitumoral properties in a