ﻻ يوجد ملخص باللغة العربية
Automatic speech recognition in reverberant conditions is a challenging task as the long-term envelopes of the reverberant speech are temporally smeared. In this paper, we propose a neural model for enhancement of sub-band temporal envelopes for dereverberation of speech. The temporal envelopes are derived using the autoregressive modeling framework of frequency domain linear prediction (FDLP). The neural enhancement model proposed in this paper performs an envelop gain based enhancement of temporal envelopes and it consists of a series of convolutional and recurrent neural network layers. The enhanced sub-band envelopes are used to generate features for automatic speech recognition (ASR). The ASR experiments are performed on the REVERB challenge dataset as well as the CHiME-3 dataset. In these experiments, the proposed neural enhancement approach provides significant improvements over a baseline ASR system with beamformed audio (average relative improvements of 21% on the development set and about 11% on the evaluation set in word error rates for REVERB challenge dataset).
The task of speech recognition in far-field environments is adversely affected by the reverberant artifacts that elicit as the temporal smearing of the sub-band envelopes. In this paper, we develop a neural model for speech dereverberation using the
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic
Despite the widespread utilization of deep neural networks (DNNs) for speech emotion recognition (SER), they are severely restricted due to the paucity of labeled data for training. Recently, segment-based approaches for SER have been evolving, which
Despite successful applications of end-to-end approaches in multi-channel speech recognition, the performance still degrades severely when the speech is corrupted by reverberation. In this paper, we integrate the dereverberation module into the end-t
The reliability of using fully convolutional networks (FCNs) has been successfully demonstrated by recent studies in many speech applications. One of the most popular variants of these FCNs is the `U-Net, which is an encoder-decoder network with skip