ترغب بنشر مسار تعليمي؟ اضغط هنا

Alert Classification for the ALeRCE Broker System: The Light Curve Classifier

95   0   0.0 ( 0 )
 نشر من قبل Paula S\\'anchez-S\\'aez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first version of the ALeRCE (Automatic Learning for the Rapid Classification of Events) broker light curve classifier. ALeRCE is currently processing the Zwicky Transient Facility (ZTF) alert stream, in preparation for the Vera C. Rubin Observatory. The ALeRCE light curve classifier uses variability features computed from the ZTF alert stream, and colors obtained from AllWISE and ZTF photometry. We apply a Balanced Random Forest algorithm with a two-level scheme, where the top level classifies each source as periodic, stochastic, or transient, and the bottom level further resolves each of these hierarchical classes, amongst 15 total classes. This classifier corresponds to the first attempt to classify multiple classes of stochastic variables (including core- and host-dominated active galactic nuclei, blazars, young stellar objects, and cataclysmic variables) in addition to different classes of periodic and transient sources, using real data. We created a labeled set using various public catalogs (such as the Catalina Surveys and {em Gaia} DR2 variable stars catalogs, and the Million Quasars catalog), and we classify all objects with $geq6$ $g$-band or $geq6$ $r$-band detections in ZTF (868,371 sources as of 2020/06/09), providing updated classifications for sources with new alerts every day. For the top level we obtain macro-averaged precision and recall scores of 0.96 and 0.99, respectively, and for the bottom level we obtain macro-averaged precision and recall scores of 0.57 and 0.76, respectively. Updated classifications from the light curve classifier can be found at the href{http://alerce.online}{ALeRCE Explorer website}.



قيم البحث

اقرأ أيضاً

We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical alert broker designed to provide a rapid and self--consistent classification of large etendue telescope alert streams, such as that provided b y the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean--led broker run by an interdisciplinary team of astronomers and engineers, working to become intermediaries between survey and follow--up facilities. ALeRCE uses a pipeline which includes the real--time ingestion, aggregation, cross--matching, machine learning (ML) classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp--based classifier, designed for rapid classification, and a light--curve--based classifier, which uses the multi--band flux evolution to achieve a more refined classification. We describe in detail our pipeline, data products, tools and services, which are made public for the community (see url{https://alerce.science}). Since we began operating our real--time ML classification of the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We describe our results to date, including the real--time processing of $9.7times10^7$ alerts, the stamp classification of $1.9times10^7$ objects, the light curve classification of $8.5times10^5$ objects, the report of 3088 supernova candidates, and different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead to go from a single-stream of alerts such as ZTF to a multi--stream ecosystem dominated by LSST.
In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.
The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.
The AGILE Science Alert System has been developed to provide prompt processing of science data for detection and alerts on gamma-ray galactic and extra galactic transients, gamma-ray bursts, X-ray bursts and other transients in the hard X-rays. The s ystem is distributed among the AGILE Data Center (ADC) of the Italian Space Agency (ASI), Frascati (Italy), and the AGILE Team Quick Look sites, located at INAF/IASF Bologna and INAF/IASF Roma. We present the Alert System architecture and performances in the first 2 years of operation of the AGILE payload.
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treas ure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic noise sources must be performed before any analysis. The TESS Data for Asteroseismology (TDA) group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics to meet expectations and to be applicable to a wide range of different intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady-state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on TASOC and MAST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا