ﻻ يوجد ملخص باللغة العربية
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern x-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big data sets when a comprehensive analysis is beyond human reach. We report the development of a novel unsupervised machine learning approach, XRD Temperature Clustering (X-TEC), that can automatically extract charge density wave (CDW) order parameters and detect intra-unit cell (IUC) ordering and its fluctuations from a series of high-volume X-ray diffraction (XRD) measurements taken at multiple temperatures. We apply X-TEC to XRD data on a quasi-skutterudite family of materials, (Ca$_x$Sr$_{1-x}$)$_3$Rh$_4$Sn$_{13}$, where a quantum critical point arising from charge order is observed as a function of Ca concentration. We further apply X-TEC to XRD data on the pyrochlore metal, Cd$_2$Re$_2$O$_7$, to investigate its two much debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rule that the Cd and Re displacements are approximately equal in amplitude, but out of phase. This discovery reveals a previously unknown involvement of $5d^2$ Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in-operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on-the-fly.
Lattice Monte Carlo calculations of interacting systems on non-bipartite lattices exhibit an oscillatory imaginary phase known as the phase or sign problem, even at zero chemical potential. One method to alleviate the sign problem is to analytically
Machine learning (ML) techniques applied to quantum many-body physics have emerged as a new research field. While the numerical power of this approach is undeniable, the most expressive ML algorithms, such as neural networks, are black boxes: The use
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy$_2$Ti$_2$O$_7$. Understanding has been hindered by issues including disorder, glass formation, and interpretatio
Machine learning models are a powerful theoretical tool for analyzing data from quantum simulators, in which results of experiments are sets of snapshots of many-body states. Recently, they have been successfully applied to distinguish between snapsh
This paper reviews some of the challenges posed by the huge growth of experimental data generated by the new generation of large-scale experiments at UK national facilities at the Rutherford Appleton Laboratory site at Harwell near Oxford. Such Big S