ﻻ يوجد ملخص باللغة العربية
Recent progress in the task of Grammatical Error Correction (GEC) has been driven by addressing data sparsity, both through new methods for generating large and noisy pretraining data and through the publication of small and higher-quality finetuning data in the BEA-2019 shared task. Building upon recent work in Neural Machine Translation (NMT), we make use of both kinds of data by deriving example-level scores on our large pretraining data based on a smaller, higher-quality dataset. In this work, we perform an empirical study to discover how to best incorporate delta-log-perplexity, a type of example scoring, into a training schedule for GEC. In doing so, we perform experiments that shed light on the function and applicability of delta-log-perplexity. Models trained on scored data achieve state-of-the-art results on common GEC test sets.
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-l
The incorporation of pseudo data in the training of grammatical error correction models has been one of the main factors in improving the performance of such models. However, consensus is lacking on experimental configurations, namely, choosing how t
Training a model for grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs, but manually annotating such pairs can be expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong
We describe an approach to Grammatical Error Correction (GEC) that is effective at making use of models trained on large amounts of weakly supervised bitext. We train the Transformer sequence-to-sequence model on 4B tokens of Wikipedia revisions and