ﻻ يوجد ملخص باللغة العربية
We investigate representations of imperative programs as constrained Horn clauses. Starting from operational semantics transition rules, we proceed by writing interpreters as constrained Horn clause programs directly encoding the rules. We then specialise an interpreter with respect to a given source program to achieve a compilation of the source language to Horn clauses (an instance of the first Futamura projection). The process is described in detail for an interpreter for a subset of C, directly encoding the rules of big-step operational semantics for C. A similar translation based on small-step semantics could be carried out, but we show an approach to obtaining a small-step representation using a linear interpreter for big-step Horn clauses. This interpreter is again specialised to achieve the translation from big-step to small-step style. The linear small-step program can be transformed back to a big-step non-linear program using a third interpreter. A regular path expression is computed for the linear program using Tarjans algorithm, and this regular expression then guides an interpreter to compute a program path. The transformation is realised by specialisation of the path interpreter. In all of the transformation phases, we use an established partial evaluator and exploit standard logic program transformation to remove redundant data structures and arguments in predicates and rename predicates to make clear their link to statements in the original source program.
It is well-known that big-step semantics is not able to distinguish stuck and non-terminating computations. This is a strong limitation as it makes very difficult to reason about properties involving infinite computations, such as type soundness, whi
Structural operational semantic specifications come in different styles: small-step and big-step. A problem with the big-step style is that specifying divergence and abrupt termination gives rise to annoying duplication. We present a novel approach t
We propose a general proof technique to show that a predicate is sound, that is, prevents stuck computation, with respect to a big-step semantics. This result may look surprising, since in big-step semantics there is no difference between non-termina
A reliable technique for deductive program verification should be proven sound with respect to the semantics of the programming language. For each different language, the construction of a separate soundness proof is often a laborious undertaking. In
We reflect on programming with complicated effects, recalling an undeservingly forgotten alternative to monadic programming and checking to see how well it can actually work in modern functional languages. We adopt and argue the position of factoring